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ABSTRACT

Four statistical selection methods for inferring tran-
scription factor (TF)-target gene (TG) pairs were de-
veloped by coupling mean squared error (MSE) or
Huber loss function, with elastic net (ENET) or least
absolute shrinkage and selection operator (Lasso)
penalty. Two methods were also developed for in-
ferring pathway gene regulatory networks (GRNs)
by combining Huber or MSE loss function with a
network (Net)-based penalty. To solve these regres-
sions, we ameliorated an accelerated proximal gra-
dient descent (APGD) algorithm to optimize param-
eter selection processes, resulting in an equally ef-
fective but much faster algorithm than the commonly
used convex optimization solver. The synthetic data
generated in a general setting was used to test four
TF-TG identification methods, ENET-based methods
performed better than Lasso-based methods. Syn-
thetic data generated from two network settings was
used to test Huber-Net and MSE-Net, which outper-
formed all other methods. The TF-TG identification
methods were also tested with SND1 and g/3 overex-
pression transcriptomic data, Huber-ENET and MSE-
ENET outperformed all other methods when genome-
wide predictions were performed. The TF-TG identi-
fication methods fill the gap of lacking a method for
genome-wide TG prediction of a TF, and potential
for validating ChiP/DAP-seq results, while the two
Net-based methods are instrumental for predicting
pathway GRNs.

INTRODUCTION

Construction and delineation of transcriptional regulatory
networks are essential for a systematic understanding of
how various biological processes and complex traits are reg-
ulated and how plants grow and develop in response to en-
vironmental cues. Although biological experiments can be
carried out to obtain gene regulatory relationships, they are
labor-intensive and time-consuming, and can therefore only
be used to infer a small number of true regulatory relation-
ships. In the last two decades, the advent of high through-
put technologies, including microarray and RNA-Seq, has
made it easier to generate a terabyte of transcriptome data
for inferring gene regulatory relationships and gen regu-
latory networks (GRNs). As the high-throughput data in
public repositories increases exponentially, computational
algorithms and tools that utilize high-throughput transcrip-
tome data and ChIP/DAP-seq data provide an alternate ap-
proach to infer gene regulatory relationships and GRNs.
However, the validity of this approach relies on the accu-
racy of the methods.

Initially, high-throughput transcriptome data sets were
primarily generated from the single-celled organisms like
bacteria and yeast, or the eukaryotic cell lines. These or-
ganisms and cell lines allowed for the generation of time-
course microarray data with small time intervals (e.g. 5—
10 min), which spurred the development of dynamic meth-
ods, including differential equations (1), finite state lin-
ear model (2), dynamic Bayesian (3), Boolean network (4),
and stochastic networks (5) and ordinary differential equa-
tions (ODE) (6). These methods require time-course data
sets with very small-time intervals for inferring gene reg-
ulatory relationships and GRNs due to the use of tempo-
ral variables. When microarray and RNA-seq were applied
to multicellular organisms such as mammals and plants,
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acquisition of data from specific cells or tissues in a time
series became challenging and time-consuming. As a result,
most transcriptome data sets generated from multicellular
organisms are static data, which are either in a non-time-
course (e.g. treatments vs controls) or in a small time-course
with very large time intervals (e.g. on a scale of many hours,
days or weeks). This kind of data can be classified into static
data because implementation of dynamic methods as men-
tioned above to this kind of data is inappropriate. Since
it is not appropriate to analyze static data using dynamic
methods, a number of static algorithms have been developed
that do not rely on any temporal variables to simulate gene
regulatory relationships. These methods includes ParCorA
(7), Maximum Relevance/Minimum Redundancy Network
(MRNET) (8), Mutual Information Based Relevance Net-
works (9), Trustful Inference of Gene Regulation using Sta-
bility Selection (TIGRESS) (10), Algorithm for the Recon-
struction of Accurate Cellular Networks (ARACNE) (11),
Context Likelihood of Relatedness (CLR) (12), Mutual In-
formation 3 (MI3) (13), Probabilistic-Based Bayesian Net-
work(14) and Random Forests (15). Recently, more meth-
ods have been developed for constructing multilayered hi-
erarchical gene regulatory networks (ML-hGRNs), such as
top-down (16,17), and bottom-up GGM algorithms (18),
and BWERF(19), and GRNs that controls a pathway or
a biological process, for instance, TGMI (20) and HB-PLS
(21). In addition, the methods for constructing multiple
joint GRNs using data from multiple tissues or conditions
have been developed, for instance, JGL (22) and JRmGRN
(23). Some recent studies (21,23) have shown that the inte-
gration of machine learning, statistics and optimization for
inferring transcription factor (TF)-target gene (TG) rela-
tionships is promising and may open a new avenue for iden-
tifying regulatory relationships and constructing GRNGs.

Plant researchers often produce a large number of trans-
genic lines in which a TF is up-/down-regulated, or use a
transient expression system, for instance, CRISPR-CAS9
(24) or dTALE (25), to perturb a TF and then generate tran-
scriptome data after the TF is overexpressed, suppressed
or perturbed. Even with this kind of data, identification
of the true target genes of the TF for further experimen-
tal studies is still a challenging task, even after a ChIP-seq
or DAP-seq experiment of this TF is conducted. This is be-
cause ChIP-seq and DAP-seq experiments often yield hun-
dred up to twenty thousand putative target genes. In ad-
dition, the ChIP/DAP-seq results show if a TF can bind
to the promoters of candidate target genes but do not pro-
vide the information if the putative target genes are actually
activated /suppressed by the TF. Therefore, in-silico meth-
ods that enable identification of the true target genes of a TF
using the above-mentioned transcriptomic data is desper-
ately demanding. The aforementioned dynamic and static
network construction methods are often not specifically tai-
lored for inferring the true TGs of a TF from large number
of candidate TGs.

In this study, four statistical selection methods were de-
veloped to infer the potential TGs for a given TF by com-
bining two loss functions, mean squared error (MSE) or
Huber loss function (Huber), with two penalty functions,
elastic net (ENET) or least absolute shrinkage and selec-

tion operator (Lasso). These four methods are referred to
as Huber-ENET, Huber-Lassso, MSE-ENET and MSE-
Lasso. The MSE and Huber loss functions were used to
measure the errors between the predicted values and the ob-
served values. Huber can more readily avoid the sensitivity
of heavy-tailed errors or outliers than MSE. The penalty
functions, ENET and Lasso contain the /; norm of the es-
timated effect sizes which can control the sparsity of the se-
lected TGs. In addition, a network-based penalty (Net) was
proposed, and combined with Huber or Lasso loss function
to develop two Net-based methods, referred to as Huber-
Net and MSE-Net, which can be used to identify pathway
GRNSs. Net penalty can incorporate prior annotated path-
way or biological process information into the prediction
(26).

To solve the regressions for the methods described above,
an accelerated proximal gradient descent (APGD) algo-
rithm was developed for the parameter optimization in all
six methods. Our simulations showed that the APGD was
equally effective but much faster than a commonly used
method called convex optimization solver (CVX). To ob-
tain stable selection results, we applied a stability selection
method, the half-sample approach, which does not need to
choose the optimal tuning parameters in selection methods.
All the methods were tested using simulated data, and the
four TF-TG identification methods were also tested with
the real transcriptomic data from SND1 and g/3 overexpres-
sion studies. In addition, the two Net methods were tested
with the real transcriptome data of all metabolic pathway
genes from the maize B73 line from public repository. Our
study showed that the four TF-TG identification meth-
ods had higher efficacy in genome-wide prediction than the
three comparison methods, CLR, MRNET and TIGRESS,
implying that the methods can be used to validate TGs
of a TF resulting from ChIP-seq or DAP-seq experiments,
while the two Net-based methods can identify pathway
GRN:Es.

MATERIALS AND METHODS
Simulated gene expression data

The simulated data were generated in three settings: (i)
a general setting; (ii) two network settings: a hierarchical
network setting and a Barabasi-Albert (BA) network set-
ting. In the general setting, p TGs were independent with
each other and the first 50 TGs were regulated by a given
TF (details in Supplemental Text S1). In the network set-
tings, we simulated p TGs with two biological network
structures, the hierarchical network and Barabasi-Albert
network. For the hierarchical network, there were 5 dis-
jointed subnetworks and each of them consisted of 100
TGs. The subnetwork was constructed as previously de-
scribed (26) (Supplementary Figure S1). For the Barabasi-
Albert (BA) network, there were 50 subnetworks and each
of them was a BA-based network comprising of 10 TGs
(27). There were 45 TGs and 40 TGs that were regulated
by a given TF for the hierarchical network and Barabasi-
Albert network, respectively (details in Supplemental
Text S2).
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Populus trichocarpa SND1 overexpression transcriptomic
data and analysis

The poplar data used for simulation was from our previous
study (16). The data can be retrieved from Gene Expres-
sion Omnibus (GEO) with accession number GSE49911.
Briefly, the data was generated and then analyzed as fol-
lowing: Poplar protoplasts isolated from stem developing
xylem were transfected with the plasmid vector harboring
poplar SND1, a TF that is known to control lignocellulosic
biosynthesis, under the control of 35S promoter, and were
then harvested for RNA-seq at 7, 12 and 25 h. Three sam-
ples of transfected protoplasts (35S-SND1) and three con-
trol samples (control vector without SND1) at each time
point were harvested. The raw read counts of all genes of
each sample were used for identification of differentially ex-
pressed genes (DEGs) at each time point using the edgeR
package(28). Meanwhile, the raw reads of all genes of each
sample were normalized with trimmed mean of M-values
(TMM), a scaling method contained in the edgeR package.
The normalized data was used for real data simulation to
validate the methods we developed in this study.

Maize g/3 overexpression transcriptomic data and analysis

Two transcriptional-activator like effectors (dTALes) that
target two non-overlapping 16-bp regions of the g/3 pro-
moter for overexpression were constructed. The two regions
targeted are located 5 and 48 bp upstream of the g/3’s tran-
scription start site. The 14-day-old seedlings were used to
test the dTALes-mediated induction of g/3. Three samples
and three controls, upon being infected with Xv1601 bac-
teria carrying dTALes, dT1 or dT2, were harvested in a
time-series with four time points: 18 and 24 h. Sequenc-
ing data were trimmed by Trimmomatic (version 0.38) (29)
and trimmed reads were aligned to the maize B73 reference
genome (B73Ref4) using STAR (2.7.3a) (30). Fragments per
kilobase of transcript per million mapped reads FPKM val-
ues were generated with Cufflink package (31), and DEGs
were identified with Cuffdiff package (32). FPKM data were
used for simulation with g/3 as a TF and all DEGs or all ge-
nomic genes as candidate target genes.

Maize B73 transcriptomic data for validation of net-based
methods

In total, the expression levels of 736 RNA-seq data of
B73 were downloaded from NCBI Sequence Read Archive
(SRA) repository. The accession numbers are shown in Ta-
ble S1. The sequence reads were preprocessed as described
for g3 data as described above. 2539 unique pathway genes
were extracted from the Plant Metabolic Network (PMN)
(33) and 23 lignin pathway genes as well as 23 transcrip-
tion factors (TFs) that are known to regulate lignin pathway
(34-38) were used for validating the two Net-based meth-
ods, Huber-Net and MSE-Net, with three network con-
struction methods, CLR, MRNET and TIGRESS used as
comparison.

Rationale for methods

Consider that the expression levels of a TF y and the ex-
pression levels of the TGs x in the whole-genome fit a linear
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relationship of the following:
yi=Po+xIBte,i=1n (1)

where n is the number of samples, x; = (x;q, - - - ,x,-p)T is
the expression levels of p target genes in sample i, and y;
is the expression level of the TF gene in sample i. fy is
the intercept and g = (1, -, B,)! are the regulated re-
gression coefficients. The TF gene regulates target gene j
if B; #0(j =1,---, p); the target gene j and target gene
k are co-regulated by TF if both 8; % 0 and B # 0. &; is
independent and identically distributed random errors with

mean 0 and variance o 2.

Statistical selection methods

Based on the above statistical model, we developed four sta-
tistical selection methods to infer the potential TGs for a
given TF and two methods to infer pathway regulatory net-
works based on the penalized regression model. The general
objective function of the penalized regression model was de-
fined as

f(Bir,a)=L(B:y, x)+ P(B; 1, ), 2

where L(B; yi, x;) is the loss function according to the ob-
served expression levels of TGs and TF and P(8; A, ) is
the penalty function which can control the sparsity of the
selected TGs.

Loss functions. In the above general objective function of
the penalized regression model, we considered the follow-
ing two loss functions, mean squared error (MSE) and Hu-
ber. The MSE loss function is defined as LMSE(B; y, x) =

n
5= (3 — Bo — x B)?, which is very sensitive to outliers.
i=1
The Huber loss function is defined as L7 (8; y, x) =
> Hy(yi — Bo — x7' B), where Hy(z) is the Huber function
i=1

for an input value z, which is quadratic function for small
z values but grows linearly for large values of z. In this
study, the parameter M is defaulted to be one-tenth of the
interquartile range (IRQ), as suggested by Deng et al.(21).
For any given positive real M (called shape parameter), the
Huber function is defined as

. z2 lz| < M
Hy(2) = {2M|z| Mz > M A)

Penalty functions. All of the three penalty functions
we considered, Lasso, ENET and Net, contained the
/; norm of the estimated effect sizes (8;). The ENET
penalty is the combination of the /; norm and squared
L norm, PENET(B; 2, o) = haeBy + 3A(1 — a)p3. A > 0 and
a € [0, 1] are the tuning parameters, where A controls the
sparsity and « is the mixing proportion between /; norm
and /, norm. The Lasso penalty is the special case of ENET
(a = 1) and PL4s°(B; 1, o) = AB;, which only contains one
tuning parameter A > 0. For the Net penalty, we assume
that the genes involved in the same pathway are often co-
regulated by a TF or the same regulatory mechanism, which
is supported by previous studies (39—41). The Net penalty
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function can utilize prior biological network knowledge
such as genetic pathways (26), which is a combination of
the /; norm and squared /, penalty using the genetic net-
work structure. As introduced in Kim and Sun (26), the
PNet(B; A, ) is defined as

PN (B; k) = A + %A(l —a)pTSTLSp

d ! 2 (58 Skﬂk>2
= Aa Bil+ sA(l —a) I ). 4

Sl po-o X T(%-5) @

In formula (4), S = diag(si, - - - , 5,) is a diagonal matrix

whose diagonal entries are the signs of estimated regression

coefficients, which can be obtained from either the ordinary

regression when plt; n, or the ridge regression when p > n.

It has been shown that the matrix S can accommodate the

problem of failure of local smoothness between linked genes

(42). For example, if two nearby target genes are negatively

regulated by TF, the signs in their regression coefficients are

expected to be different. In formula (4), L is a symmetric

normalized Laplacian matrix, where the elements of L, Ly,
are given by

1 if j=kandd; #0

Lik=—(d;dy)"? if j#kand j~k
0 otherwise

where j ~ k means that the target genes j and k are linked
in the genetic network and d; is the total number of genes
linked with the target gene j. Note that the genetic network
information L are considered as the functional relationships
among the target genes, which can be obtained from the ex-
isting annotation. For example, we can construct an associ-
ation network using the pathways or biological processes in-
formation, where the targets genes are associated with each
other if they are within a metabolic pathway or a biological
process.

Based on the above two loss functions along with
three penalty functions, we developed six statistical selec-
tion methods, MSE-Lasso, MSE-ENET, MSE-Net, Huber-
Lasso, Huber-ENET and Huber-Net. For a given pair of
A and o, we can estimate the regression coefficients of
p target genes, B, by minimizing the objective function
f(B; A, «) introduced in formula (2). In other words, g =
argming f(B; A, «). The penalty function P(B; 1, «) is con-
vex (26,43), so the solution to 8 can be obtained via one of
the convex optimization algorithms.

Algorithm to solve the penalized regression models

Since |8,] is convex but not differentiable at §; = 0 for j =
I,---, p, it is difficult to use the gradient descent method
to find B = argming f(B). Although we can use the gen-
eral convex optimization solver CVX (44), it is too slow
for real biological applications especially when there are
a large number of genes involved in the analysis. There-
fore, we adapted an accelerated proximal gradient descent
(APGD) algorithm which is an effective algorithm when the
objective function can be decomposed as a sum of a con-
vex differentiable function and a convex non-differentiable
function. In the six methods we developed, the objective

function f(B) can be decomposed as f(8) = g(B) + h(B),
where g(B) is a convex differentiable function and /(8)
is a convex non-differentiable function. The idea behind
APGD method is to make a quadratic approximation to
g(B) and leave h(B) unchanged (45), then use the iterations
to solve B = argming f(B) (Details in the Supplemental
Texts S3-S8).

Selection probability

To obtain a stable selection result, we applied the stability
selection method, namely, half-sample approach, to each
target gene, which does not need to choose the optimal tun-
ing parameters in selection methods. For a pair of fixed val-
ues of A and « (« = 1 for Lasso penalty), n/2 samples are
selected at random without replacement and then the re-
gression coefficients are estimated based on this subset of
samples. This process is repeated B times for each pair of
a and X over a grid set of @ and A. Let ﬁj(Sb;a, A) de-
note the estimated regression efficient for the hth sample
(S, b=1,---, B), the selection probability of target gene
j, SP;, is the maximum portion of non-zero B i (Shsa, A)
over all pairs of « and A. In other words,

B

1 5
SP; = max — Z I(B; (Sp;er, 1) #0), (%)

b=1

where 1(B i (Sp;0,A) #0) is an indicator function and
1B/ (Sa 1) #0) = Lif B,(Syia 1) £ Oforb=1,--- , B.

There are two major advantages for the use of selection
probability. First, we avoid selecting the optimal tuning pa-
rameters A and «, which is challenging in penalized regres-
sion analysis. Second, it has been shown that the results
obtained from the half-sample approach and the selection
probabilities are more stable than those obtained from the
cross-validation (26,46). The main challenge of the stabil-
ity selection method is how to appropriately choose the grid
sets of the two parameters A and «. For a given «, the small-
est A such that all estimated coefficients are zeros from two
loss functions, MSE and Huber, can be defined as

)\%IiE = szllaXp Z (y,' — ,3() — X,‘j,Bj) Xij /Ol, (6)
=1p |
n
T = max |3V Hus (5) x| /e (7)
T =1
where VHy(y:) =2y 1(1yi)| < M) +

2Msign(y;)I(|y;| > M) is the gradient of Huber func-
tion. Therefore, the grid set of A can be set as a logjo-scale
from ratio*i,ge tO Apax, where the ratio =0.01 as
suggested by R package glmnet.

Implementation

Six statistical selection methods based on the penalized
regression models and the APGD algorithm for solving
these six statistical methods had been implemented in both
Python3 and R and then packed into TGPred. Both of them
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used commonly used libraries for scientific computing. For
Python3 version of TGPred, we used numpy, scipy and
sklearn to support efficient mathematical and dataframe
computing, cvxpy to compare the runtime and estimated
results of APGD with commonly used CVX, and networkx
to generate synthetic data based on the BA network set-
ting. For R version of TGPred, we used Matrix and MASS
to support the efficient mathematical computing, and mvt-
norm and igraph to generate synthetic data. TGPred can
be directly used within Python and R. Both regulation ef-
fect B; and selection probability SP; of target gene j can
be calculated by TGPred for j =1, ---, p. Note that the
large-scale genetic data set is acceptable to APGD and the
computation time was evaluated on the high-performance
computing (HPC) cluster (Intel Xeon E5-2670 2.6 GHz,
16 GB RAM). For example, when the number of target
genes is >30000 (p > 30000) and the half-sample approach
with B = 500 times of resamplings was used, the com-
putation times of ENET-based methods were about 12h
CPU time with 90 pairs of tuning parameters « and A; the
computation times of Lasso-based methods were about 8h
CPU time with 50 tuning parameters A; and the compu-
tation times of Net-based methods were about 26 h CPU
time with 90 pairs of tuning parameters « and A. TGPred
package has been made publicly available on GitHub as
open-source software for downloading (https://github.com/
xueweic/TGPred); more detailed information on how to in-
stall and run the tool was enclosed in the packages.

RESULTS
Validation of the methods with simulated data

Simulation studies were used to evaluate the performance of
the six statistical selection methods we developed based on
the penalized regression models. We considered three simu-
lation settings, the general setting and two network settings,
and we used n = 300 samples and p = 500 TGs in all sim-
ulation settings. For each simulation setting, the regulation
effects for all genes based on each method were estimated
by the improved APGD, and the selection probabilities were
calculated by the half-sample approach with B = 500 times.
Then, the true positive rates (TPRs) were used to evaluate
the selection performance, which is defined as the number
of the truly regulated genes among the selected top-ranked
genes divided by the total number of truly regulated genes.

In the general setting, TGs were independent with each
other. Therefore, we only compared the performances of
Huber-Lasso, MSE-Lasso, Huber-ENET and MSE-ENET
with the three comparison methods, CLR, MRNET and
TIGRESS. Figure 1 showed the TPRs of these for meth-
ods based on the number of selected top-ranked genes. As
it is known, the bigger pre-set regulation effect of g may
result in the higher TPRs of all methods, while the lower
pre-set regulation effect may result in the lower TPRs. In
both cases, we cannot differentiate the performances of dif-
ferent methods. Therefore, we pre-set the regulation effect
B =0.2 or 0.3, and 50 TGs were regulated by a given TF
in this simulation setting. When g = 0.3, all four methods
performed equivalently well as we cut 40 top-ranked genes
or less, achieved over 80% TPRs as we cut 50 top-ranked
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genes, and 95% TPRs as we cut 85 top-ranked genes. MSE-
ENET and Huber-ENET performed better than the other
five methods.

For the network settings, we considered two network
structures, the hierarchical network (Supplementary Figure
S1) and the Barabasi-Albert network (not shown). Figure
2 showed how TPRs varied with the different numbers of
the top-ranked genes for different methods. For the hierar-
chical network where 45 TGs (out of 500 genes) were truly
regulated by a given TF, we pre-set the regulation effects
B = 0.3 or 0.4. Since the Net penalty function incorporated
the network structure, TPRs of Huber-Net and MSE-Net
were higher than the other seven methods. For the Barabasi-
Albert network setting where 40 true TGs (out of 500 genes)
were regulated by a given TF, we pre-set the regulation effect
B = 0.1 or 0.2. Huber-Net and MSE-Net also had the high-
est TPRs as expected, indicating that Huber-Net and MSE-
Net can incorporate the functionally associated genes to in-
crease the probability of these genes to be selected as the
TGs for a given TF. Based on both TPRs, we concluded that
Huber-Net and MSE-Net performed slightly better than
MRNET and CLR and better than all other methods. Com-
pared to the general setting, it is obvious that the four TF—
TG identification methods performed less differentially in
the two network settings, as shown in Figure 2.

We also compared the computational efficiency and the
regression coefficients estimated by APGD and CVX, a
commonly used package for convex optimization, for sev-
eral pairs of tuning parameters A and «. Figures S2-S4
showed that the computation times of CVX and APGD
among all grid sets of & and XA based on B = 500 subsam-
ples drawn with the half-sample approach. Supplementary
Figure S2 showed the computation times of Huber-Lasso,
Huber-ENET, MSE-Lasso and MSE-ENET under the gen-
eral setting with 8 = 0.2. For ENET penalty function, n; =

1,---, 10 indicated the order of selected A in a logjg-scale
from ratio * Ayux t0 Amay, Where A, 18 related to o =
0.1,---,0.9. For Lasso penalty, n; = 1, ---, 100 indicated

the order of selected XA in a logjp-scale from ratio * Ay
to Apax, Where A, 18 related to o = 1. The data sets were
simulated under the same setting (Supplemental Text S1).
All analyses were performed on a macOS (2.7 GHz Quad-
Core Intel Core i7, 16 GB memory). APGD had much
lower computational complexity than CVX since the run-
ning time of APGD was usually less than one fifth of that of
CVX for four TF-TG identification methods (Supplemen-
tary Figure S2). A disadvantage of CVX is that all of the es-
timated regression coefficients were not equal to 0 (around
1072? for non-zero regression coefficients). Therefore, the
stability selection method may not be applicable to the CVX
method since it is difficult to find a cut-off threshold for the
regression coefficients. The APGD algorithm was also eval-
uated under the hierarchical network and Barabasi-Albert
network settings for all six methods. As shown in Figures
S3-S4, the computation times of APGD were much shorter
than those of CVX no matter which methods (Huber-Lasso,
Huber-ENET, Huber-Net, MSE-Lasso, MSE-ENET and
MSE-Net) it was applied to. The results manifested the
consistent lower computational complexity of APGD than
CVX, as we had observed for the general setting (Supple-
mentary Figure S2).
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Figure 1. The true positive rates (TPRs) of the four statistical selection methods for identifying transcription factor (TF)—target gene (TG) relationships
in the general setting. The selection probabilities were calculated using the half-sample approach method with B = 500 times of resampling. Each curve
represents the mean of 100 simulations. The standard errors for all methods were too small, and were thus not plotted.

We compared the regression coefficients estimated by
APGD and CVX for several pairs of tuning parameters X
and «. Figures S5-S7 showed that the QQ plots of the re-
gression coefficients estimated by both CVX and APGD.
Supplementary Figure S5 showed the estimation of regu-
lation effects of Huber-Lasso, Huber-ENET, MSE-Lasso
and MSE-ENET under the general setting with g = 0.2.
The values lied along the diagonal line as the Huber loss
function was used, indicating the regression coefficients es-
timated by CVX and APGD were identical. When the MSE
loss function was used, the non-zero estimations of regu-
lation effects of CVX were greater than those of APGD
(Supplementary Figure S7). However, there were only 50
true TGs (out of 500 genes) that were regulated by a given
TF in this simulation setting. That is, CVX obtained more
false positives than APGD. Except for those false posi-
tives estimated by CVX, the regression coefficients esti-
mated by these two methods were nearly identical. Fig-
ures S6-S7 showed that the estimation of regulation effects
of our proposed six statistical selection methods under the
network setting, where we used 8 = 0.4 in the hierarchical
network setting (Supplementary Figure S6) and 8 = 0.1 in
the Barabasi-Albert network setting (Supplementary Fig-
ure S7). We observed that the patterns of the estimation
performance were similar to those shown in Supplementary
Figure S5.

Validation of the four TF-TG identification methods with
SND1 overexpression transcriptomic data

178 DEGs in response to SNDI overexpression were iden-
tified in our early publication (16). These 178 DEGs were
classified into two groups, 84 direct target genes and 94 in-
direct target genes of SND1 using Top-down GGM Algo-
rithm. Of these 84 direct target genes, 16 randomly drawn
genes were tested with ChIP-PCR assay using SND1 an-
tibodies, all of them were proven to be the true direct tar-

get genes of SND1(16). Sixteen genes randomly drawn from
these 94 indirect target genes were also subjected to ChIP-
PCR using SND1 antibodies and 15 were proven to be indi-
rect target genes of SND1, indicating the 84 genes can be as-
sumed to be true target genes of SND1 for testing our meth-
ods. Using the three time-point SND/ overexpression tran-
scriptomic data sets, we tested our methods for identifying
these 84 direct target genes of SND1 from 178 DEGs and
all 33691 genomic genes based on the selective probabilities
yielded from each method. The results, as shown in shown
in Figures 3A and B, demonstrated the following: (i) When
applied to 178 DEGs, Huber-ENET and MSE-ENET in
overall identified less positive TGs than CLR and MRNET
methods but more than Huber-Lasso, MSE-Lasso and TI-
GRESS; Huber-Lasso, MSE-Lasso identified more positive
genes than TIGRESS. Based on ROCs, Huber-ENET and
MSE-ENET appeared to rank more positive genes to the
very top of TG list than any other methods. (ii) When ap-
plied to all 33 691 genomic genes, Huber-ENET and MSE-
ENET identified more positive genes than Huber-Lasso,
and MSE-Lasso, while Huber-Lasso and MSE-Lasso
identified more positive TGs than CLR, MRNET and
TIGRESS.

Validation of the four TF-TG identification methods with
glossy (gl3) overexpression transcriptomic data

We also validated our methods with g/3 overexpression tran-
scriptomic data that was generated with Transcriptional-
Activator Like effectors (TALes) system. Two TALes, dT1
and dT2, were constructed to target two non-overlapping
16-bp regions (4 and 48 bp upstream of the transcrip-
tion start site) in the g/3’s promoter to activate it. Analy-
sis of RNA-seq data yielded at 24 h revealed 144 DEGs
(93 upregulated and 51 downregulated genes), that were
activated by both dT1 and dT2 (25). From these 144
genes, we identified 93 tightly responsive genes to g/3 and
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Figure 2. The true positive rates (TPRs) of the six statistical selection methods in the two network settings, the hierarchical network and the Barabasi-Albert
network. The selection probabilities were calculated using the half-sample approach method with B = 500 times of resampling. Each curve represents the
mean of 50 simulations. The standard errors for all methods were too small, and were not plotted.

78 direct TGs of g/3 using top-down GGM Algorithm with
a cut-off threshold of corrected P-values <0.05. The 78
genes contain 6 of 9 known glossy genes present in the litera-
ture, supporting that the 78 genes are true positive TGs. Us-
ing time-point g/3 overexpression transcriptomic data sets,
we tested our methods for identifying these 78 direct TGs
of gI3 from 144 DEGs and all 30 263 genomic genes based
on the selective probabilities. The results, as shown in Fig-
ures 3C and D, demonstrated the following: (i) when ap-
plied to 144 DEGs, Huber-ENET and MSE-ENET in over-
all identified less positive genes than TIGRESS but more
than CLR and MRNET. Huber-Lasso, MSE-Lasso, under-
performed all other methods; (ii) when applied to all 30
263 genomic genes, Huber-ENET and MSE-ENET outper-
formed all other methods because they identified more posi-
tive genes than Huber-Lasso and MSE-Lasso, while Huber-
Lasso and MSE-Lasso identified more positive TGs than
CLR, MRNET and TIGRESS.

Validation of the two net-based methods for identifying lignin
pathway genes and GRN

Maize B73 compendium transcriptomic data of 736 sam-
ples was used for predicting the regulatory relationships
between transcription factor (TFs) and pathway genes
(PWGs). A total of 2539 PWGs belonging to 446 pathways
were obtained after the PWGs with 90% or more expres-
sion values being zero were removed. The Laplacian matrix
L of 2539 PWGs was constructed based on 446 pathways,
that is, two PWGs were associated together if they belong
to at least one of 446 pathways. Since these 23 TFs are the
known TFs that regulate lignin pathway in multiple plant
species (34-38). We specifically examined 21 pathway genes
in maize which were curated by Plant Metabolic Pathway
(47) as lignin pathway genes.

We applied Huber-Net and MSE-Net to two input sub-
sets of transcriptomic data: one contains 2539 PWGs x
736 samples, and the other contains 23 TFs x 736 sam-
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Figure 3. The performance of four transcription factor (TF)-target gene (TG) identification methods. (A) ROCs generated with the SND1 overexpression
transcriptomic data set of 178 differentially expressed genes (DEGs) (resulting from SND1 overexpression) from Populus trichocarpa. (B) ROCs generated
with the SND1 overexpression transcriptomic data set of all genes (33 691) from Populus trichocarpa. (C) ROCs generated with the gl3 overexpression
transcriptomic data set of 144 DEGs (resulting from g/3 overexpression) from Zea mays. (D) ROCs generated with the g/3 overexpression transcriptomic
data set of all genes (30 263) from Zea mays. AuROC, area under the receiver-operating characteristic curve.

ples to calculate the selection probability of 2539 PWGs
to each of 23 TFs. For Huber-Net, nine « values (o =
0.1,0.2,---,0.9) and 10 different A values in a calculated
range from the loss function (‘Lambda_gird’ function from
our developed package ‘APGD’) were used. For Huber-
Lasso regression model, 100 A values in a calculated range
from the loss function with @ = 1 were used. Furthermore,
the parameter B, which represents the number of subsets
of samples randomly drawn during the half-sample resam-
pling, was set to 500. The resulting selection probabilities
of the 2539 PWGs x the 23 TFs calculated by Huber-Net
and MSE-Net were shown in Tables S2 and S3, respectively,
and the results by the three comparison methods, CLR,
MRNET and TIGRESS, were shown in Tables S4, S5 and

S6, respectively. We then extracted the selection probabili-
ties of the 21 lignin PWGs x the 23 TFs resulting from all
methods, and were shown in Table S7. Since the compar-
ison methods, CLR, MRNET and TIGRESS, use differ-
ent statistics to evaluate the regulatory strengths, we could
not use the same criterion to cut off the ranked PWGs to
each TF. We hypothesized that the top 100 genes identi-
fied from 2539 PWGs for each TF by each method are its
putative TGs, and summarized the TGs for all 23 TFs for
each method. We then extracted the TF-TG pairs where the
TGs are lignin pathway genes and compared which method
could identify more regulatory relationships between the
lignin pathway genes and the 23 TFs. The results are shown
in Figure 4, where TFs were ranked clockwise based on
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Figure 4. The gene regulatory networks of lignin pathway produced by Huber-Net and MSE-Net methods, with three network construction methods,
CLR, MRNET and TIGRSS, used as comparison. The transcription factors (TFs) were ranked based on their connectivity to lignin pathway genes in
clockwise. The number shown near each network is the number of edges identified by each method.

the number of their connectivity to pathway genes; the TFs
with higher connectivity are assumed to regulate more path-
way genes and/or have larger impact on pathway genes and
thus were ranked highly. The results showed that Huber-Net
and MSE-Net methods identified 50 and 49 regulatory re-
lationships, respectively, more than that of TIGRESS. The
high number of regulatory relationships is the suggestive of
a potential recognition of known regulatory relationships.
However, both our methods identified less regulatory rela-
tionships compared to MRNET and CLR, which identified
84 and 70 regulatory relationships, respectively. Currently,
we do not know which method is better than another. This
is because we know these 23 TFs are lignin pathway reg-
ulators but exactly which pathway genes are the true tar-
gets of which TF are mostly unknown, and we thus cannot
draw further and more firm conclusions that our methods
are better or worse than comparison methods. Neverthe-
less, if the objective is to identify pathway regulators, the
top TFs ranked for lignin pathway by different methods
shared many TFs in common. We also cut off the ranked
PWG list to each TF generated by two Net-based meth-
ods using a selection probability threshold of 0.9, and the
results are shown in Supplementary Figure S8, Huber-Net
and MSE-Net identified 76 and 28 regulatory relationships,

respectively. The ranking order of TFs changed slightly as
compared to same methods as shown in Figure 4.
Huber-Net identified the unique pathway genes that
were not identified by any other methods including the
three comparison methods. For example, C4H regulated by
MYBI103-2, and HCT-1 by KNAT7. MSE-Net uniquely
identified CCoAOMT1-2 regulated by MYB69, 4CL3 by
MYB42, HCT-1/2/3 by MYB42. Huber-Net and MSE-Net
together uniquely identified FAH1-1, FAHI-2 by MYB63.
To show the overlaps of the regulatory relationships iden-
tified by different methods, we generated a Venn diagram
(Figure 5) based on the regulatory relationships shown in
Figure 4. The results indicated that Huber-Net and MSE-
Net are very similar methods because the gene regulatory
relationships identified by the two methods had 42 in com-
mon. Similarly, MRNET and CLR are very similar meth-
ods because the gene regulatory relationships identified by
two methods had 62 in common (Figure 5). In addition,
of the 36 regulatory relationships identified by TIGRESS,
24 overlapped those identified by Huber-Net and/or MSE-
Net, while only 17 overlapped those identified by MR-
NET and/or CLR, indicating it is more similar to Huber-
Net and MSE-Net methods rather than MRNET and
CLR (Figure 5). Since 24, 26 and 24 out of 50 regulatory
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Figure 5. The Venn diagram that shows the overlaps of regulatory relation-

ships between 23 transcription factors and lignin pathway genes identified
by Huber-Net and MSE-Net, CLR, MRNET and TIGRESS methods.

relationships identified by Huber-Net overlapped those
identified MRNET, CLR and TIGRESS, respectively, while
21,19 and 21 out of 49 regulatory relationships identified by
MSE-Net overlapped those identified MRNET, CLR and
TIGRESS, respectively (Figure 5), Huber-Net and MSE-
Net have their values in identifying unique true regulatory
relationships.

DISCUSSION

Solving convex optimization problem by implementing
APGD

The loss functions and the penalty functions we used in this
study are all convex functions (26,39). Although CVXis the
software commonly used for solving convex optimization
problems(44), but one overt problem of CVX is its slow-
ness when being used for large datasets. In this study, we
implemented an APGD algorithm (45) to replace the CVX.
APGD is an effective algorithm to solve an optimization
problem with a decomposable objective function. Our sim-
ulation studies have shown that APGD was not only capa-
ble of obtaining the similar estimated regulation effects of
all TGs for a given TF, but it also shortened the computa-
tion time to 1/5 of that by using CVX, enabling the predic-
tion of true TGs of a TF from a large number of candidate
TG genes (e.g. >30 000 as demonstrated in Supplementary
Figure S2). In principle, CVX cannot be used to calculate
the stable selection probability. Stable selection probability
is calculated based on the ratio of the number of non-zero
estimated regulation effects of a TG to the number of times
we resampled in the half-sample approach, and all candi-
date tuning parameters. When using APGD, we can obtain
a subset of TGs with non-zero regulation effects, and the
rest subsets of TGs with zero regulation effects. Therefore,

we do not need to choose threshold by applying APGD to
the half-sample approach.

Development and elucidation of six novel methods for identi-
fying TGs of a TF

With the improved new APGD algorithm, we set out to
develop novel methods to predict the TGs of a TF of in-
terest using omics data, an important issue that has not
been resolved in current bioinformatics. Using two loss
functions, Huber and MSE, and three penalty functions,
Lasso, ENET and Net, we developed four statistical selec-
tion methods, MSE-ENET, Huber-ENET, MSE-Lasso and
Huber-Lasso for identifying TF-TG relationships, and two
additional methods, MSE-Net and Huber-Net, for build-
ing pathway GRNs. The Huber loss function, which is a
hybrid of squared errors for relatively small errors and ab-
solute errors for relatively large errors (see Formula (3)),
has been shown to be more robust than MSE loss func-
tion when there are outliers (48). To test the four TF-TG
identification methods, we used the synthetic data gener-
ated from the general setting and found that ENET-based
methods performed better than Lasso-based methods if all
TGs are independent (Figure 1). When the two network
settings were used to test all six methods and the three
comparison methods, the MSE-Net and Huber-Net out-
performed the other four non-Net methods since the Net
penalty could incorporate the network structure of TGs for
enhancing the prediction. Notably, one tuning parameter
A from Lasso penalty and two tuning parameters « and A
from ENET or Net penalty were obtained from the cross-
validation by minimizing the predicted accuracy (21,49).
However, the results are not stable since the samples were
randomly split in the cross-validation (26). Fortunately, a
stability selection method has been developed by Mein-
shausen and Bithlmann (46) that uses a subsampling ap-
proach to obtain a stable selection result; this subsampling
approach can be used to determine the amount of regular-
ization. In this study, we employed the selection probabili-
ties to evaluate and select candidate TGs of a given TF.
Plant biologists frequently employ a transient system or
develop transgenic lines to perturb a TF, as shown in Fig-
ure 6; (i) this is followed by RNA-seq experiments to obtain
the transcriptomic data; after the DEGs pertaining a given
TF are identified, biologists usually selected some DEGs
based on their significant levels (e.g. corrected P-values or
g-values) to validate their functions; (ii) using a correlation
method (50), a dependence-based method (11,51) or a mod-
eling method to identify candidate genes to validate (52);
(ii1) using top-down GGM algorithm (16,17,53,54) to pre-
dict TGs of the TF from the DEGs; However, correlation
and independence-based methods usually have a low accu-
racy and top-down GGM algorithm suffers from constraint
to scaling up due to the high computational cost of search-
ing the space of a complete combination of a subset of can-
didate genes. For this reason, there is a pressing need to
develop efficient methods for identifying the true TGs of a
given TF. In addition, there are some other circumstances
where we need new methods to identify or validate the TGs
of a TF. For example, when genome-wide experiments like
ChIP-seq and DAP-seq are conducted to identify putative

€202 18quisAoN |z uo 1senb Aq GZ9z/2//c80peb|/S/S/e10nie/qebieu/woo dno olwspeoe//:sdiy WoJl) papeojumoq



Overexpression Experiments

B |

v v v ;
dTALe Crisprcasd  Stable ‘
Activation

=TE O O .ss Lasso
shamEn b=
"o 0 0 o, oo

TG A B ®

Y

_— -_— .- -_— .- -_— - -
TG Y z {
‘(Enzymes) | Huber-Net

A . W & —>
y &
S "_:«44 '._'."'":!’T:f/ k ]
/ -

4 *\#_}r/ | < >
= ¥ i
Convex 0 Machine P i\, 'I"""F@\
Optimization\, Learning Sl iy I _;—:'7 £

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 3 11

TF; TF, TFs - TFua TFy
TF: Transcription factor 2 —B 1 —E— R —
TG: Target gene A—B—3—B—B——
6 - - O - = D
PWG: Pathway gene T EEEE S
9 f<=g = - & & D
—r 3l | & = = = = eFalseTG
- = - - -
N-3 - - & & &
N-2 L _d - - o = D
-1 - - > T T 9
N - > = &« @« =
Selection . ]
Probability TF-TG relationships
" ? ¢TF5
o ©
APGD ® o |
H

I P
1

TF-PWG network

Figure 6. An integrative framework for identifying target genes (TGs) of a transcription factor (TF) of interest using transcriptomic data by integration of

statistics, machine leaning and convex optimization.

TGs of a TF, a few hundred to even twenty thousand puta-
tive TGs can be identified, indicating that their promoters
contain TF binding site. However, the presence of a TF-
binding site of the TF does not necessarily guarantee an
activation. We need highly efficient methods to validate the
existence of an effect-and-response relationship between the
TF and the putative TGs identified by ChIP-/DAP-seq. In
this sense, our methods, Huber-ENET, Huber-Lasso, MSE-
ENET and MSE-Lasso, fill in a gap of lacking an effec-
tive method for predicting and/or validating TGs of a TF
of interest using large-scale omics data. Such methods are
sought by many biologists. Our methods resampled a large
number of subsets of data (e.g. 500) to compute the selec-
tion probabilities of all genes to one TF simultaneously, and
then selected top-ranked TGs based on the stabilities of se-
lection probabilities across all subsets. Therefore, our meth-
ods augmented the selection process and increased the re-
liability of TGs. Even if each time we computed linear re-
lationships of one TF with all genomic genes or the DEGs
resulting from the TF overexpression with one re-sampled
subset, the aggregation of the selection probabilities from
all sampled subsets could increase the chance of the nonlin-
ear true relationships being captured.

Instead of identifying TGs of a TF independently, we
sometimes need to investigate if a TF regulates a pathway
or a biological process. In this case, we can determine if a
TF’s TGs contain multiple genes belonging to a pathway or
a gene ontology that represents a biological process. Toward
this goal, we developed Huber-Net and MSE-Net methods
based on a network-based penalty. In our extensive sim-
ulation studies based on the network setting, we showed
that Huber-Net and MSE-Net performed better than the
other four methods in terms of the true positive discov-
ery rates. We then applied these two methods to identify
true TGs of 23 TFs, which are known to regulate lignin
pathway (34-38), from all 2539 pathway genes (PWGs) of
maize.

The power of statistics, machine learning and optimization
combined approaches

In this study, we combined statistics (half-sample approach-
derived selection probability), machine learning (regular-
ization in unsupervised learning) and convex optimization
(solving regularization with APGD) to identify TGs of a TF
of interest, the flowchart depicting the methods is illustrated
in Figure 6. Our results showed that this kind of combined
approach has higher efficacy in identifying the true TGs, as
we shown early (21).

In our methods, we utilized two loss functions. The Hu-
ber loss function is a combination of linear and quadratic
loss functions, and the MSE loss function, which measures
the average of the squared errors, ensures that our trained
model has no outlier predictions with huge errors. MSE
puts more weights on these errors due to the squared por-
tion of the function. The mathematical benefit of MSE is
particularly evident in its use at analyzing the performance
of linear regression, as it allows one to partition the varia-
tion in a dataset into variation explained by the model and
variation explained by randomness. Huber loss is more ro-
bust to outliers than MSE loss and least absolute deviation
(LAD) loss, and has higher statistical efficiency than the
LAD loss function in the absence of outliers (48).

In addition, we utilized three different penalty functions:
Lasso, ENET and Net. Lasso penalty adds a penalty for
non-zero coefficients to penalize the sum of their absolute
values (/; penalty). As a result, for high values of A, many
coefficients are exactly zero under Lasso. ENET penalty
was proposed in response to the critique that the the vari-
able selection of Lasso only considers the absolutely value
of estimated effects, resulting in instability. ENET penalty
combines the penalties of ridge regression and Lasso to
gain ‘super-penalty’. Net penalty can incorporate a set of
genes like a pathway or a biological process as represented
by a gene ontology, and enables us to investigate if a TF

€202 18quisAoN |z uo 1senb Aq GZ9z/2//c80peb|/S/S/e10nie/qebieu/woo dno olwspeoe//:sdiy WoJl) papeojumoq



12 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 3

regulates multiple genes involved in a pathway or a biology
process. When TGs of multiple TFs are predicted, we can
then use the results to screen the TFs for regulation of a
specific metabolic pathway, biological process and complex
trait.

We demonstrated that the improved APGD had less com-
putational complexity for solving the convex optimization
problem with both differentiable and undifferentiable func-
tions. Traditional regularization methods need to choose
optimal tuning parameters. One limitation of traditional
regularization methods with cross-validation is that they de-
pend on the saturation of the data; different data sets may
obtain different tuning parameter sets, leading to different
or unstable results. APGD is a highly efficient approach to
solve our proposed methods as well as the other penalized
regressions. The incorporation of half-sample-based selec-
tion probability allows for more stable results and avoids the
choice of optimal tuning parameters. Therefore, integration
of statistics, machine learning and optimization enables us
to take the advantage of all methods and combines them to
generate a powerful approach to identify true TGs of a TF
with high efficacy.

Due to the disadvantage of the feature selection proce-
dure, we cannot check if the selected genes have strong evi-
dence related to the outcome. For future studies, we plan to
integrate statistical inference in the selection procedure and
further investigate the selection performance by integrating
both selection and statistical inference.

CONCLUSIONS

Four new statistical selection methods, referred to as Huber-
ENET, MSE-ENET, Huber-Lasso and MSE-Lasso for
identifying TGs of a TF of interest and two new methods,
Huber-Net and MSE-Net, for inferring pathway GRNs
have been developed by integration of statistics, machine
leaning and convex optimization approaches. An APGD al-
gorithm was developed to solve convex optimization with
significantly reduced computation times. Comprehensive
simulations and analyses of the four TF-TG identification
methods using synthetic data under a general setting in-
dicated that Huber-ENET, MSE-ENET, Huber-Lasso and
MSE-Lasso could be used to identify true TGs of a TF with
high efficacy, especially in genome-wide predictions. In sim-
ulations using the data from two network settings, Huber-
Net and MSE-Net outperformed any other non-Net meth-
ods for identifying true TGs involved in a pathway or bio-
logical process. For real data, the Huber optimization has a
noticeable contribution to the identification of true TGs of
a given TF by increasing the selection probabilities as com-
pared to MSE, and Huber-Net and MSE-Net could iden-
tify many unique regulatory relationships as compared to
CLR, MRNET and TIGRESS. The ENET penalty func-
tion contributed greatly to enhancement of the method ef-
ficacy as compared to Lasso. AuROC plotting showed that
all six methods could rank more positive known TGs to top
of TG lists. The TF-TG identification methods developed
will fill a methodological gap for genome-wide TF-TG pre-
diction and have a great potential for being used to validate
ChIP/DAP-seq results, while the Net-based methods will
be instrumental for inferring pathway GRN.
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