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BSTRACT 

our statistical selection methods for inferring tran- 
cription factor (TF)–target gene (TG) pairs were de- 
eloped by coupling mean squared error (MSE) or 
uber loss function, with elastic net (ENET) or least 
bsolute shrinkage and selection operator (Lasso) 
enalty. Two methods were also developed for in- 

erring pathway gene regulatory networks (GRNs) 
y combining Huber or MSE loss function with a 

etwork (Net)-based penalty . T o solve these regres- 
ions, we ameliorated an accelerated proximal gra- 
ient descent (APGD) algorithm to optimize param- 
ter selection processes, resulting in an equally ef- 
ective b ut m uch faster algorithm than the commonly 

sed convex optimization solver. The synthetic data 

enerated in a general setting was used to test four 
F–TG identification methods, ENET-based methods 

erformed better than Lasso-based methods. Syn- 
hetic data generated fr om tw o netw ork settings was 

sed to test Huber-Net and MSE-Net, which outper- 
ormed all other methods. The TF–TG identification 

ethods were also tested with SND1 and gl3 overex- 
ression transcriptomic data, Huber-ENET and MSE- 
NET outperformed all other methods when genome- 
ide predictions were performed. The TF–TG identi- 
cation methods fill the gap of lacking a method for 
enome-wide TG prediction of a TF, and potential 
 or v alidating ChIP / DAP-seq results, while the tw o 

et-based methods are instrumental for predicting 
athway GRNs. r
t
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NTRODUCTION 

onstruction and delineation of transcriptional regulatory 

etworks are essential for a systematic understanding of 
ow various biological processes and complex traits are reg- 
lated and how plants grow and de v elop in response to en- 
ironmental cues. Although biological experiments can be 
arried out to obtain gene regulatory relationships, they are 
abor-intensi v e and time-consuming, and can ther efor e only 

e used to infer a small number of true regulatory relation- 
hips. In the last two decades, the advent of high through- 
ut technologies, including microarray and RNA-Seq, has 
ade it easier to generate a terabyte of transcriptome data 

or inferring gene r egulatory r elationships and gen regu- 
atory networks (GRNs). As the high-throughput data in 

ublic repositories increases exponentially, computational 
lgorithms and tools that utilize high-throughput transcrip- 
ome data and ChIP / DAP-seq data provide an alternate ap- 
roach to infer gene regulatory relationships and GRNs. 
owe v er, the validity of this approach relies on the accu- 

acy of the methods. 
Initially, high-throughput transcriptome data sets were 

rimarily generated from the single-celled organisms like 
acteria and yeast, or the eukaryotic cell lines. These or- 
anisms and cell lines allowed for the generation of time- 
ourse microarray data with small time intervals (e.g. 5– 

0 min), which spurred the de v elopment of dynamic meth- 
ds, including differential equations ( 1 ), finite state lin- 
ar model ( 2 ), dynamic Bayesian ( 3 ), Boolean network ( 4 ),
nd stochastic networks ( 5 ) and ordinary differential equa- 
ions (ODE) ( 6 ). These methods r equir e time-course data 

ets with very small-time intervals for inferring gene reg- 
la tory rela tionships and GRNs due to the use of tempo- 
al variables. When microarray and RNA-seq were applied 

o multicellular organisms such as mammals and plants, 
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acquisition of data from specific cells or tissues in a time
series became challenging and time-consuming. As a result,
most transcriptome data sets generated from multicellular
organisms are static data, which are either in a non-time-
course (e.g. treatments vs controls) or in a small time-course
with very large time intervals (e.g. on a scale of many hours,
days or weeks). This kind of data can be classified into static
data because implementation of dynamic methods as men-
tioned above to this kind of data is inappropriate. Since
it is not appropriate to analyze static data using dynamic
methods, a number of static algorithms have been developed
that do not rely on any temporal variables to simulate gene
r egulatory r elationships. These methods includes ParCorA
( 7 ), Maxim um Relevance / Minim um Redundancy Network
(MRNET) ( 8 ), Mutual Information Based Relevance Net-
works ( 9 ), Trustful Inference of Gene Regulation using Sta-
bility Selection (TIGRESS) ( 10 ), Algorithm for the Recon-
struction of Accurate Cellular Networks (ARACNE) ( 11 ),
Context Likelihood of Relatedness (CLR) ( 12 ), Mutual In-
formation 3 (MI3) ( 13 ), Probabilistic-Based Bayesian Net-
work( 14 ) and Random For ests ( 15 ). Recently, mor e meth-
ods have been developed for constructing multilayered hi-
erarchical gene regulatory networks (ML-hGRNs), such as
top-down ( 16 , 17 ), and bottom-up GGM algorithms ( 18 ),
and BWERF( 19 ), and GRNs that controls a pathway or
a biological process, for instance, TGMI ( 20 ) and HB-PLS
( 21 ). In addition, the methods for constructing multiple
joint GRNs using data from multiple tissues or conditions
hav e been de v eloped, for instance, JGL ( 22 ) and JRmGRN
( 23 ). Some recent studies ( 21 , 23 ) have shown that the inte-
gration of machine learning, statistics and optimization for
inferring transcription factor (TF)-target gene (TG) rela-
tionships is promising and may open a ne w av enue for iden-
tifying regulatory relationships and constructing GRNs. 

Plant r esear chers often produce a large number of trans-
genic lines in which a TF is up- / down-regulated, or use a
transient expression system, for instance, CRISPR-CAS9
( 24 ) or dTALE ( 25 ), to perturb a TF and then gener ate tr an-
scriptome data after the TF is ov ere xpressed, suppressed
or perturbed. Even with this kind of da ta, identifica tion
of the true target genes of the TF for further experimen-
tal studies is still a challenging task, e v en after a ChIP-seq
or DAP-seq experiment of this TF is conducted. This is be-
cause ChIP-seq and DAP-seq experiments often yield hun-
dred up to twenty thousand putati v e target genes. In ad-
dition, the ChIP / DAP-seq results show if a TF can bind
to the promoters of candidate target genes but do not pro-
vide the information if the putati v e target genes are actually
activ ated / suppressed b y the TF. Ther efor e, in-silico meth-
ods that enable identification of the true target genes of a TF
using the above-mentioned transcriptomic data is desper-
ately demanding. The aforementioned dynamic and static
network construction methods are often not specifically tai-
lored for inferring the true TGs of a TF from large number
of candidate TGs. 

In this study, four statistical selection methods were de-
veloped to infer the potential TGs for a gi v en TF by com-
bining two loss functions, mean squared error (MSE) or
Huber loss function (Huber), with two penalty functions,
elastic net (ENET) or least absolute shrinkage and selec-
tion operator (Lasso). These four methods ar e r eferr ed to
as Huber-ENET, Huber-Lassso, MSE-ENET and MSE-
Lasso. The MSE and Huber loss functions were used to
measure the errors between the predicted values and the ob-
served values. Huber can mor e r eadily avoid the sensitivity
of heavy-tailed errors or outliers than MSE. The penalty
functions, ENET and Lasso contain the l 1 norm of the es-
tima ted ef fect sizes which can control the sparsity of the se-
lected TGs. In addition, a network-based penalty (Net) was
proposed, and combined with Huber or Lasso loss function
to de v elop two Net-based methods, r eferr ed to as Huber-
Net and MSE-Net, which can be used to identify pathway
GRNs. Net penalty can incorporate prior annotated path-
way or biological process information into the prediction
( 26 ). 

To solve the r egr essions for the methods described above,
an accelerated proximal gradient descent (APGD) algo-
rithm was de v eloped for the parameter optimization in all
six methods. Our simulations showed that the APGD was
equally effecti v e but m uch faster than a commonl y used
method called conv e x optimization solv er (CVX). To ob-
tain stable selection results, we applied a stability selection
method, the half-sample a pproach, w hich does not need to
choose the optimal tuning parameters in selection methods.
All the methods were tested using simulated data, and the
four TF–TG identification methods were also tested with
the real transcriptomic data from SND1 and gl3 ov ere xpres-
sion studies. In addition, the two Net methods were tested
with the real transcriptome data of all metabolic pathway
genes from the maize B73 line from public repository. Our
stud y showed tha t the four TF–TG identifica tion meth-
ods had higher efficacy in genome-wide prediction than the
three comparison methods, CLR, MRNET and TIGRESS,
implying that the methods can be used to validate TGs
of a TF resulting from ChIP-seq or DAP-seq experiments,
while the two Net-based methods can identify pathway
GRNs. 

MATERIALS AND METHODS 

Simulated gene expression data 

The simulated data were generated in three settings: (i)
a general setting; (ii) two network settings: a hierarchical
network setting and a Bar abasi-Albert (B A) network set-
ting. In the general setting, p TGs were independent with
each other and the first 50 TGs were regulated by a gi v en
TF (details in Supplemental Text S1). In the network set-
tings, we simulated p TGs with two biological network
structur es, the hierar chical network and Barabasi-Albert
network. For the hierarchical network, there were 5 dis-
jointed subnetworks and each of them consisted of 100
T Gs. The subnetw ork was constructed as previously de-
scribed ( 26 ) (Supplementary Figure S1). For the Barabasi-
Albert (BA) network, there were 50 subnetworks and each
of them was a BA-based network comprising of 10 TGs
( 27 ). Ther e wer e 45 TGs and 40 TGs that wer e r egulated
by a gi v en TF for the hierarchical networ k and Barabasi-
Albert networ k, respecti v ely (details in Supplemental
Text S2). 
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opulus trichocarpa SND1 o ver expr ession tr anscriptomic 
ata and analysis 

he poplar data used for simulation was from our previous 
tudy ( 16 ). The data can be retrie v ed from Gene Expres-
ion Omnibus (GEO) with accession number GSE49911. 
riefly, the data was generated and then analyzed as fol- 

owing: Poplar protoplasts isolated from stem de v eloping 

ylem were transfected with the plasmid vector harboring 

oplar SND1, a TF that is known to control lignocellulosic 
iosynthesis, under the control of 35S promoter, and were 
hen harvested for RNA-seq at 7, 12 and 25 h. Three sam- 
les of transfected protoplasts (35S-SND1) and three con- 
rol samples (control vector without SND1) at each time 
oint were harvested. The raw read counts of all genes of 
ach sample were used for identification of differentially ex- 
ressed genes (DEGs) at each time point using the edgeR 

ackage( 28 ). Meanwhile, the raw reads of all genes of each 

ample were normalized with trimmed mean of M -values 
TMM), a scaling method contained in the edgeR package. 
he normalized data was used for real data simulation to 

alidate the methods we de v eloped in this study. 

aize gl3 o ver expr ession tr anscriptomic data and analysis 

wo transcriptional-activator like effectors (dTALes) that 
arget two non-overlapping 16-bp regions of the gl3 pro- 
oter for ov ere xpression were constructed. The two regions 

argeted are located 5 and 48 bp upstream of the gl3 ’s tran- 
cription start site. The 14-day-old seedlings were used to 

est the dTALes-mediated induction of gl3 . Three samples 
nd three controls, upon being infected with Xv1601 bac- 
eria carrying dTALes, dT1 or dT2, were harvested in a 

ime-series with four time points: 18 and 24 h. Sequenc- 
ng data were trimmed by Trimmomatic (version 0.38) ( 29 ) 
nd trimmed r eads wer e aligned to the maize B73 r efer ence
enome (B73Ref4) using STAR (2.7.3a) ( 30 ). Fragments per 
ilobase of transcript per million mapped reads FPKM val- 
es were generated with Cufflink package ( 31 ), and DEGs 
ere identified with Cuf fdif f package ( 32 ). FPKM da ta were
sed for simulation with gl3 as a TF and all DEGs or all ge-
omic genes as candidate target genes. 

aize B73 transcriptomic data for validation of net-based 

ethods 

n total, the expression levels of 736 RNA-seq data of 
73 were downloaded from NCBI Sequence Read Archi v e 

SRA) repository. The accession numbers are shown in Ta- 
le S1. The sequence reads were preprocessed as described 

or gl3 data as described above. 2539 unique pathway genes 
ere extracted from the Plant Metabolic Network (PMN) 

 33 ) and 23 lignin pathway genes as well as 23 transcrip- 
ion factors (TFs) that are known to regulate lignin pathway 

 34–38 ) were used for validating the two Net-based meth- 
ds, Huber-Net and MSE-Net, with three network con- 
truction methods, CLR, MRNET and TIGRESS used as 
omparison. 

ationale for methods 

onsider that the expression levels of a TF y and the ex- 
ression le v els of the TGs x in the whole-genome fit a linear 
elationship of the following: 

y i = β0 + x T i β + ε i , i = 1 , · · · , n (1) 

here n is the number of samples, x i = ( x i1 , · · · , x i p ) T is 
he e xpression le v els of p target genes in sample i , and y i 
s the expression level of the TF gene in sample i . β0 is 
he intercept and β = ( β1 , · · · , βp ) T are the regulated re- 
ression coefficients. The TF gene regulates target gene j 
f β j �= 0 ( j = 1 , · · · , p ) ; the tar get gene j and tar get gene

ar e co-r egulated by TF if both β j �= 0 and βk �= 0 . ε i is
ndependent and identically distributed random errors with 

ean 0 and variance σ 2 . 

tatistical selection methods 

ased on the above statistical model, we de v eloped four sta- 
istical selection methods to infer the potential TGs for a 

i v en TF and two methods to infer pa thway regula tory net-
orks based on the penalized r egr ession model. The general 
bjecti v e function of the penalized r egr ession model was de- 
ned as 

f ( β; λ, α) = L ( β; y, x ) + P ( β; λ, α) , (2) 

here L ( β; y i , x i ) is the loss function according to the ob- 
erv ed e xpression le v els of TGs and TF and P ( β; λ, α) is
he penalty function which can control the sparsity of the 
elected TGs. 

oss functions. In the above general objecti v e function of 
he penalized r egr ession model, we consider ed the follow- 
ng two loss functions, mean squared error (MSE) and Hu- 
er. The MSE loss function is defined as L 

MSE ( β; y, x ) = 

1 
2 n 

n ∑ 

i= 1 
( y i − β0 − x T i β) 2 , which is very sensitive to outliers. 

he Huber loss function is defined as L 

Hub e r ( β; y, x ) = 

n ∑ 

= 1 
H M 

( y i − β0 − x T i β) , where H M 

( z) is the Huber function 

or an input value z, which is quadratic function for small 
values but grows linearly for large values of z. In this 

tudy, the parameter M is defaulted to be one-tenth of the 
nterquartile range (IRQ), as suggested by Deng et al.( 21 ). 
or any gi v en positi v e real M (called shape parameter), the 
uber function is defined as 

H M 

( z ) = 

{
z 2 | z | ≤ M 

2 M 

| z | − M 

2 | z | > M 

. (3) 

enalty functions. All of the three penalty functions 
e considered, Lasso, ENET and Net, contained the 

 1 norm of the estima ted ef fect sizes ( β1 ). The ENET 

enalty is the combination of the l 1 norm and squared 

 2 norm, P 

E NE T ( β; λ, α) = λαβ1 + 

1 
2 λ( 1 − α) β2 

2 . λ > 0 and 

∈ [ 0 , 1 ] are the tuning parameters, where λ controls the 
parsity and α is the mixing proportion between l 1 norm 

nd l 2 norm. The Lasso penalty is the special case of ENET 

 α = 1 ) and P 

Las s o ( β; λ, α) = λβ1 , w hich onl y contains one
uning parameter λ > 0 . For the Net penalty, we assume 
hat the genes involved in the same pathway are often co- 
egulated by a TF or the same regulatory mechanism, which 

s supported by previous studies ( 39–41 ). The Net penalty 
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function can utilize prior biological network knowledge
such as genetic pathways ( 26 ), which is a combination of
the l 1 norm and squared l 2 penalty using the genetic net-
work structure. As introduced in Kim and Sun ( 26 ), the
P 

Net ( β; λ, α) is defined as 

P Net ( β; λ, α) = λαβ1 + 

1 
2 
λ ( 1 − α) βT S 

T LS β

= λα

p ∑ 

j= 1 

∣∣β j 
∣∣ + 

1 
2 
λ ( 1 − α) 

p ∑ 

j= 1 

∑ 

j∼k 

( 

s j β j √ 

d j 
− s k βk √ 

d k 

) 2 

. (4)

In formula ( 4 ), S = diag( s 1 , · · · , s p ) is a diagonal matrix
whose diagonal entries are the signs of estimated r egr ession
coefficients, which can be obtained from either the ordinary
r egr ession when plt; n , or the ridge r egr ession when p ≥ n .
It has been shown that the matrix S can accommodate the
problem of failure of local smoothness between linked genes
( 42 ). For example, if two nearby target genes are negati v ely
regulated by TF, the signs in their regression coefficients are
expected to be different. In formula ( 4 ), L is a symmetric
normalized La placian matrix, w here the elements of L , L jk ,
are gi v en by 

L jk = 

⎧ ⎨ 

⎩ 

1 i f j = k and d j �= 0 

−(
d j d k 

)− 1 
2 i f j �= k and j ∼ k 

0 otherwi s e 
, 

where j ∼ k means that the target genes j and k are linked
in the genetic network and d j is the total number of genes
linked with the target gene j . Note that the genetic network
information L are considered as the functional relationships
among the target genes, which can be obtained from the ex-
isting annotation. For example, we can construct an associ-
ation network using the pathways or biological processes in-
formation, where the targets genes are associated with each
other if they are within a metabolic pathway or a biological
process. 

Based on the above two loss functions along with
three penalty functions, we de v eloped six statistical selec-
tion methods, MSE-Lasso, MSE-ENET, MSE-Net, Huber-
Lasso, Huber -ENET and Huber -Net. For a gi v en pair of
λ and α, we can estimate the r egr ession coefficients of
p target genes, β, by minimizing the objecti v e function
f ( β; λ, α) introduced in formula ( 2 ). In other words, β =
argmi n β f ( β; λ, α) . The penalty function P ( β; λ, α) is con-
v e x ( 26 , 43 ), so the solution to β can be obtained via one of
the conv e x optimization algorithms. 

Algorithm to solve the penalized r egr ession models 

Since | β j | is conv e x but not dif ferentiable a t β j = 0 for j =
1 , · · · , p, it is difficult to use the gradient descent method
to find β = argmi n β f ( β) . Although we can use the gen-
eral conv e x optimization solv er CVX ( 44 ), it is too slow
for real biological applications especially when there are
a large number of genes involved in the analysis. There-
fore, we adapted an accelerated proximal gradient descent
(APGD) algorithm which is an effecti v e algorithm when the
objecti v e function can be decomposed as a sum of a con-
v e x differentiab le function and a conv e x non-differentiab le
function. In the six methods we de v eloped, the objecti v e
function f ( β) can be decomposed as f ( β) = g( β) + h ( β) ,
where g( β) is a conv e x differentiab le function and h ( β)
is a conv e x non-differentiab le function. The idea behind
APGD method is to make a quadratic approximation to
g( β) and leave h ( β) unchanged ( 45 ), then use the iterations
to solve β = argmi n β f ( β) (Details in the Supplemental
Texts S3–S8). 

Selection probability 

To obtain a stable selection result, we applied the stability
selection method, namely, half-sample approach, to each
target gene, which does not need to choose the optimal tun-
ing parameters in selection methods. For a pair of fixed val-
ues of λ and α ( α = 1 for Lasso penalty), n/ 2 samples are
selected at random without replacement and then the re-
gr ession coefficients ar e estimated based on this subset of
samples. This process is repeated B times for each pair of
α and λ over a grid set of α and λ. Let ˆ β j ( S b ; α, λ) de-
note the estimated r egr ession efficient for the bth sample
( S b , b = 1 , · · · , B), the selection probability of target gene
j , S P j , is the maximum portion of non-zero 

ˆ β j ( S b ; α, λ)
over all pairs of α and λ. In other words, 

S P j = max 

α,λ

1 

B 

B ∑ 

b= 1 

I 
(

ˆ β j ( S b ; α, λ) �= 0 

)
, (5)

where I ( ̂  β j ( S b ; α, λ) �= 0 ) is an indicator function and
I ( ̂  β j ( S b ; α, λ) �= 0 ) = 1 if ˆ β j ( S b ; α, λ) �= 0 for b = 1 , · · · , B.

Ther e ar e two major advantages for the use of selection
probability. First, we avoid selecting the optimal tuning pa-
rameters λ and α, which is challenging in penalized r egr es-
sion analysis. Second, it has been shown that the results
obtained from the half-sample approach and the selection
probabilities ar e mor e stable than those obtained from the
cross-validation ( 26 , 46 ). The main challenge of the stabil-
ity selection method is how to a ppropriatel y choose the grid
sets of the two parameters λ and α. For a gi v en α, the small-
est λ such that all estimated coefficients are zer os fr om two
loss functions, MSE and Huber, can be defined as 

λMSE 
max = max 

j= 1 , ··· ,p 

∣∣∣∣∣
n ∑ 

i= 1 

(
y i − β0 − x i j β j 

)
x i j 

∣∣∣∣∣ /α, (6)

λHub e r 
max = max 

j= 1 , ··· ,p 

∣∣∣∣∣
n ∑ 

i= 1 

∇ H M 

( y i ) x i j 

∣∣∣∣∣ /α, (7)

where ∇ H M 

( y i ) = 2 y i I ( | y i | ≤ M ) +
2 Msign ( y i ) I ( | y i | > M ) is the gradient of Huber func-
tion. Ther efor e, the grid set of λ can be set as a log 10 -scale
from ratio ∗λmax to λmax , where the ratio = 0 . 01 as
suggested by R package glmnet. 

Implementation 

Six statistical selection methods based on the penalized
r egr ession models and the APGD algorithm for solving
these six statistical methods had been implemented in both
Python3 and R and then packed into TGPred. Both of them
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sed commonly used libraries for scientific computing. For 
ython3 version of TGPred, we used numpy, scipy and 

klearn to support efficient mathematical and dataframe 
omputing, cvxp y to compar e the runtime and estimated 

esults of APGD with commonly used CVX, and networkx 

o generate synthetic data based on the BA network set- 
ing. For R version of TGPred, we used Matrix and MASS 

o support the ef ficient ma thema tical computing, and mvt- 
orm and igraph to generate synthetic data. TGPred can 

e directly used within Python and R. Both regulation ef- 
ect β j and selection probability S P j of target gene j can 

e calculated by TGPred for j = 1 , · · · , p. Note that the
arge-scale genetic data set is acceptable to APGD and the 
omputation time was evaluated on the high-performance 
omputing (HPC) cluster (Intel Xeon E5-2670 2.6 GHz, 
6 GB RAM). For example, when the number of target 
enes is > 30 000 ( p > 30 000) and the half-sample approach
ith B = 500 times of resamplings was used, the com- 
utation times of ENET-based methods were about 12h 

PU time with 90 pairs of tuning parameters α and λ; the 
omputation times of Lasso-based methods were about 8h 

PU time with 50 tuning parameters λ; and the compu- 
ation times of Net-based methods were about 26 h CPU 

ime with 90 pairs of tuning parameters α and λ. TGPred 

ackage has been made publicly available on GitHub as 
pen-sour ce softwar e for downloading ( https://github.com/ 
ueweic/TGPr ed ); mor e detailed information on how to in- 
tall and run the tool was enclosed in the packages. 

ESULTS 

alidation of the methods with simulated data 

imulation studies were used to evaluate the performance of 
he six statistical selection methods we de v eloped based on 

he penalized r egr ession models. We considered three simu- 
ation settings, the general setting and two network settings, 
nd we used n = 300 samples and p = 500 TGs in all sim-
lation settings. For each simulation setting, the regulation 

ffects for all genes based on each method were estimated 

y the improved APGD, and the selection probabilities were 
alculated by the half-sample approach with B = 500 times. 
hen, the true positi v e rates (TPRs) were used to e valuate 

he selection performance, which is defined as the number 
f the truly regulated genes among the selected top-ranked 

enes divided by the total number of truly regulated genes. 
In the general setting, TGs were independent with each 

ther. Ther efor e, we only compared the performances of 
uber-Lasso , MSE-Lasso , Huber-ENET and MSE-ENET 

ith the three comparison methods, CLR, MRNET and 

IGRESS. Figure 1 showed the TPRs of these for meth- 
ds based on the number of selected top-ranked genes. As 

t is known, the bigger pre-set regulation effect of β may 

esult in the higher TPRs of all methods, while the lower 
r e-set r egula tion ef fect may result in the lower TPRs. In
oth cases, we cannot dif ferentia te the performances of dif- 
er ent methods. Ther efor e, we pr e-set the r egula tion ef fect
= 0 . 2 or 0 . 3 , and 50 TGs wer e r egulated by a gi v en TF

n this simulation setting. When β = 0 . 3 , all four methods 
erformed equivalently well as we cut 40 top-ranked genes 
r less, achie v ed ov er 80% TPRs as we cut 50 top-ranked
enes, and 95% TPRs as we cut 85 top-ranked genes. MSE- 
NET and Huber-ENET performed better than the other 
v e methods. 
For the network settings, we considered two network 

tructur es, the hierar chical network (Supplementary Figur e 
1) and the Barabasi-Albert network (not shown). Figure 
 showed how TPRs varied with the different numbers of 
he top-ranked genes for different methods. For the hierar- 
hical network where 45 TGs (out of 500 genes) were truly 

egulated by a gi v en TF, we pre-set the regulation effects 
= 0 . 3 or 0 . 4 . Since the Net penalty function incorporated

he network structure, TPRs of Huber-Net and MSE-Net 
ere higher than the other se v en methods. For the Barabasi- 
lbert network setting where 40 true TGs (out of 500 genes) 
er e r egulated by a gi v en TF, we pre-set the regula tion ef fect
= 0 . 1 or 0 . 2 . Huber-Net and MSE-Net also had the high-

st TPRs as expected, indicating that Huber-Net and MSE- 
et can incorporate the functionally associated genes to in- 

rease the probability of these genes to be selected as the 
Gs for a gi v en TF. Based on both TPRs, we concluded that
uber-Net and MSE-Net performed slightly better than 

RNET and CLR and better than all other methods. Com- 
ared to the general setting, it is obvious that the four TF– 

G identification methods performed less differentially in 

he two network settings, as shown in Figure 2 . 
We also compared the computational efficiency and the 

 egr ession coefficients estimated by APGD and CVX, a 

ommonly used package for conv e x optimization, for sev- 
ral pairs of tuning parameters λ and α. Figures S2–S4 

howed that the computation times of CVX and APGD 

mong all grid sets of α and λ based on B = 500 subsam- 
les drawn with the half-sample approach. Supplementary 

igure S2 showed the computation times of Huber-Lasso, 
uber-ENET, MSE-Lasso and MSE-ENET under the gen- 

ral setting with β = 0 . 2 . For ENET penalty function, n λ = 

 , · · · , 10 indicated the order of selected λ in a log 10 -scale 
rom ratio ∗ λmax to λmax , where λmax is related to α = 

 . 1 , · · · , 0 . 9 . For Lasso penalty, n λ = 1 , · · · , 100 indicated
he order of selected λ in a log 10 -scale from ratio ∗ λmax 
o λmax , where λmax is rela ted to α = 1 . The da ta sets were
imulated under the same setting (Supplemental Text S1). 
ll analyses were performed on a macOS (2.7 GHz Quad- 
or e Intel Cor e i7, 16 GB memory). APGD had much 

ower computational complexity than CVX since the run- 
ing time of APGD was usually less than one fifth of that of 
VX f or f our TF–TG identification methods (Supplemen- 

ary Figure S2). A disadvantage of CVX is that all of the es- 
imated r egr ession coefficients wer e not equal to 0 (around 

0 

−22 for non-zero r egr ession coefficients). Ther efor e, the 
tability selection method may not be applicable to the CVX 

ethod since it is difficult to find a cut-off threshold for the 
 egr ession coefficients. The APGD algorithm was also eval- 
ated under the hierarchical network and Barabasi-Albert 
etwork settings for all six methods. As shown in Figures 
3-S4, the computation times of APGD were much shorter 
han those of CVX no matter which methods (Huber-Lasso, 
uber -ENET, Huber -Net, MSE-Lasso, MSE-ENET and 

SE-Net) it was applied to. The results manifested the 
onsistent lower computational complexity of APGD than 

VX, as we had observed for the general setting (Supple- 
entary Figure S2). 

https://github.com/xueweic/TGPred
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Figure 1. The true positi v e rates (TPRs) of the four statistical selection methods for identifying transcription factor (TF)–target gene (TG) relationships 
in the general setting. The selection probabilities were calculated using the half-sample approach method with B = 500 times of resampling. Each curve 
r epr esents the mean of 100 simulations. The standard errors for all methods were too small, and were thus not plotted. 
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We compared the regression coefficients estimated by
APGD and CVX for se v er al pairs of tuning par ameters λ
and α. Figures S5–S7 showed that the QQ plots of the re-
gression coef ficients estima ted by both CVX and APGD.
Supplementary Figure S5 showed the estimation of regu-
la tion ef fects of Huber -Lasso, Huber -ENET, MSE-Lasso
and MSE-ENET under the general setting with β = 0 . 2 .
The values lied along the diagonal line as the Huber loss
function was used, indicating the r egr ession coefficients es-
timated by CVX and APGD were identical. When the MSE
loss function was used, the non-zero estimations of regu-
la tion ef fects of CVX wer e gr eater than those of APGD
(Supplementary Figure S7). Howe v er, there were only 50
true TGs (out of 500 genes) that wer e r egulated by a gi v en
TF in this simulation setting. That is, CVX obtained more
false positi v es than APGD. Except for those false posi-
ti v es estimated by CVX, the r egr ession coefficients esti-
mated by these two methods were nearly identical. Fig-
ures S6-S7 showed that the estimation of regulation effects
of our proposed six statistical selection methods under the
network setting, where we used β = 0 . 4 in the hierarchical
network setting (Supplementary Figure S6) and β = 0 . 1 in
the Barabasi-Albert network setting (Supplementary Fig-
ure S7). We observed that the patterns of the estimation
performance were similar to those shown in Supplementary
Figure S5. 

Validation of the four TF–TG identification methods with
SND1 o ver expr ession tr anscriptomic data 

178 DEGs in response to SND1 ov ere xpression were iden-
tified in our early publication ( 16 ). These 178 DEGs were
classified into two groups, 84 direct target genes and 94 in-
direct target genes of SND1 using Top-down GGM Algo-
rithm. Of these 84 direct target genes, 16 randomly drawn
genes were tested with ChIP-PCR assay using SND1 an-
tibodies, all of them were proven to be the true direct tar-
get genes of SND1( 16 ). Sixteen genes r andomly dr awn from
these 94 indirect target genes were also subjected to ChIP-
PCR using SND1 antibodies and 15 were proven to be indi-
rect target genes of SND1, indicating the 84 genes can be as-
sumed to be true target genes of SND1 for testing our meth-
ods. Using the three time-point SND1 ov ere xpression tran-
scriptomic data sets, we tested our methods for identifying
these 84 direct target genes of SND1 from 178 DEGs and
all 33691 genomic genes based on the selecti v e probabilities
yielded from each method. The results, as shown in shown
in Figures 3 A and B, demonstrated the following: (i) When
applied to 178 DEGs, Huber-ENET and MSE-ENET in
overall identified less positive TGs than CLR and MRNET
methods but more than Huber-Lasso, MSE-Lasso and TI-
GRESS; Huber-Lasso, MSE-Lasso identified more positi v e
genes than TIGRESS. Based on ROCs, Huber-ENET and
MSE-ENET appeared to rank more positi v e genes to the
very top of TG list than any other methods. (ii) When ap-
plied to all 33 691 genomic genes, Huber-ENET and MSE-
ENET identified more positi v e genes than Huber-Lasso,
and MSE-Lasso, while Huber-Lasso and MSE-Lasso
identified more positi v e TGs than CLR, MRNET and
TIGRESS. 

Validation of the four TF–TG identification methods with
glossy (gl3) o ver expr ession tr anscriptomic data 

We also validated our methods with gl3 o ver expr ession tr an-
scriptomic data that was generated with Transcriptional-
Activator Like effectors (TALes) system. Two TALes, dT1
and dT2, were constructed to target two non-overlapping
16-bp regions (4 and 48 bp upstream of the transcrip-
tion start site) in the gl3 ’s promoter to activate it. Analy-
sis of RNA-seq data yielded at 24 h re v ealed 144 DEGs
(93 upregulated and 51 downregulated genes), that were
activ ated b y both dT1 and dT2 ( 25 ). From these 144
genes, we identified 93 tightly responsi v e genes to gl3 and
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Figure 2. The true positi v e rates (TPRs) of the six statistical selection methods in the two network settings, the hierarchical network and the Barabasi-Albert 
network. The selection probabilities were calculated using the half-sample approach method with B = 500 times of resampling. Each curve r epr esents the 
mean of 50 simulations. The standard errors for all methods were too small, and were not plotted. 
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8 direct TGs of gl3 using top-down GGM Algorithm with 

 cut-off threshold of corrected P -values < 0.05. The 78 

enes contain 6 of 9 known glossy genes present in the litera- 
ure, supporting that the 78 genes are true positi v e TGs. Us- 
ng time-point gl3 ov ere xpression transcriptomic data sets, 
e tested our methods for identifying these 78 direct TGs 
f gl3 from 144 DEGs and all 30 263 genomic genes based 

n the selecti v e probabilities. The results, as shown in Fig- 
res 3 C and D, demonstrated the following: (i) when ap- 
lied to 144 DEGs, Huber-ENET and MSE-ENET in over- 
ll identified less positi v e genes than TIGRESS but more 
han CLR and MRNET. Huber-Lasso , MSE-Lasso , under- 
erformed all other methods; (ii) w hen a pplied to all 30 

63 genomic genes, Huber-ENET and MSE-ENET outper- 
ormed all other methods because they identified more posi- 
i v e genes than Huber-Lasso and MSE-Lasso, while Huber- 
asso and MSE-Lasso identified more positi v e TGs than 

LR, MRNET and TIGRESS. 
7
alidation of the two net-based methods for identifying lignin 

athway genes and GRN 

aize B73 compendium transcriptomic data of 736 sam- 
les was used for predicting the regulatory relationships 
etween transcription factor (TFs) and pathway genes 
PWGs). A total of 2539 PWGs belonging to 446 pathways 
ere obtained after the PWGs with 90% or more expres- 

ion values being zero were removed. The Laplacian matrix 

 of 2539 PWGs was constructed based on 446 pathways, 
hat is, two PWGs were associated together if they belong 

o at least one of 446 pathways. Since these 23 TFs are the 
nown TFs that regulate lignin pathway in multiple plant 
pecies ( 34–38 ). We specifically examined 21 pathway genes 
n maize which were curated by Plant Metabolic Pathway 

 47 ) as lignin pathway genes. 
We applied Huber-Net and MSE-Net to two input sub- 

ets of transcriptomic data : one contains 2539 PWGs ×
36 samples, and the other contains 23 TFs × 736 sam- 
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Figure 3. The performance of four transcription factor (TF)–target gene (TG) identification methods. ( A ) ROCs generated with the SND1 ov ere xpression 
transcriptomic data set of 178 differ entially expr essed genes (DEGs) (resulting from SND1 ov ere xpression) from Populus trichocarpa . ( B ) ROCs generated 
with the SND1 ov ere xpression transcriptomic data set of all genes (33 691) from Populus trichocarpa . ( C ) ROCs generated with the gl3 ov ere xpression 
transcriptomic data set of 144 DEGs (resulting from gl3 ov ere xpression) from Zea mays . ( D ) ROCs generated with the gl3 ov ere xpression transcriptomic 
data set of all genes (30 263) from Zea mays . AuROC, area under the recei v er-oper ating char acteristic curve. 
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ples to calculate the selection probability of 2539 PWGs
to each of 23 TFs. For Huber-Net, nine α values ( α =
0 . 1 , 0 . 2 , · · · , 0 . 9 ) and 10 different λ values in a calculated
range from the loss function (‘Lambda gird’ function from
our de v eloped package ‘APGD’) were used. For Huber-
Lasso r egr ession model, 100 λ values in a calculated range
from the loss function with α = 1 were used. Furthermore,
the parameter B, which r epr esents the number of subsets
of samples randomly drawn during the half-sample resam-
pling, was set to 500. The resulting selection probabilities
of the 2539 PWGs × the 23 TFs calculated by Huber-Net
and MSE-Net were shown in Tables S2 and S3, respecti v ely,
and the results by the three comparison methods, CLR,
MRNET and TIGRESS, were shown in Tables S4, S5 and
S6, respecti v ely. We then e xtracted the selection probabili-
ties of the 21 lignin PWGs × the 23 TFs resulting from all
methods, and were shown in Table S7. Since the compar-
ison methods, CLR, MRNET and TIGRESS, use differ-
ent statistics to evaluate the regulatory strengths, we could
not use the same criterion to cut off the ranked PWGs to
each TF. We hypothesized that the top 100 genes identi-
fied from 2539 PWGs for each TF by each method are its
putati v e TGs, and summarized the TGs for all 23 TFs for
each method. We then extracted the TF–TG pairs where the
TGs are lignin pathway genes and compared which method
could identify more regulatory relationships between the
lignin pathway genes and the 23 TFs. The r esults ar e shown
in Figur e 4 , wher e TFs wer e ranked clockwise based on
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Figure 4. The gene regulatory networks of lignin pathway produced by Huber-Net and MSE-Net methods, with three network construction methods, 
CLR, MRNET and TIGRSS, used as comparison. The transcription factors (TFs) were ranked based on their connectivity to lignin pathway genes in 
clockwise. The number shown near each network is the number of edges identified by each method. 
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he number of their connectivity to pathway genes; the TFs 
ith higher connectivity are assumed to regulate more path- 
ay genes and / or have larger impact on pathway genes and 

hus were ranked highly. The results showed that Huber-Net 
nd MSE-Net methods identified 50 and 49 regulatory re- 
ationships, respecti v ely, more than that of TIGRESS. The 
igh number of regulatory relationships is the suggesti v e of 
 potential recognition of known regulatory relationships. 
owe v er, both our methods identified less regulatory rela- 

ionships compared to MRNET and CLR, which identified 

4 and 70 r egulatory r elationships, r especti v el y. Currentl y,
e do not know which method is better than another. This 

s because we know these 23 TFs are lignin pathway reg- 
lators but exactly which pathway genes are the true tar- 
ets of which TF are mostly unknown, and we thus cannot 
raw further and more firm conclusions that our methods 
re better or worse than comparison methods. Ne v erthe- 
ess, if the objecti v e is to identify pa thway regula tors, the
op TFs ranked for lignin pathway by different methods 
hared many TFs in common. We also cut off the ranked 

WG list to each TF generated by two Net-based meth- 
ds using a selection probability threshold of 0.9, and the 
 esults ar e shown in Supplementary Figur e S8, Huber-Net 
nd MSE-Net identified 76 and 28 regulatory relationships, 
especti v ely. The ranking or der of TFs changed slightly as 
ompared to same methods as shown in Figure 4 . 

Huber-Net identified the unique pathway genes that 
ere not identified by any other methods including the 

hree comparison methods. For example, C4H regulated by 

YB103-2, and HCT-1 by KN AT7. MSE-Net uniquel y 

dentified CCoAOMT1-2 regulated by MYB69, 4CL3 by 

YB42, HCT-1 / 2 / 3 by MYB42. Huber-Net and MSE-Net 
o gether uniquel y identified F AH1-1, F AH1-2 by MYB63. 
o show the overlaps of the regulatory relationships iden- 
ified by different methods, we generated a Venn diagram 

Figure 5 ) based on the regulatory relationships shown in 

igure 4 . The results indica ted tha t Huber-Net and MSE- 
et are very similar methods because the gene regulatory 

elationships identified by the two methods had 42 in com- 
on. Similarly, MRNET and CLR are very similar meth- 

ds because the gene regulatory relationships identified by 

wo methods had 62 in common (Figure 5 ). In addition, 
f the 36 r egulatory r elationships identified by TIGRESS, 
4 overlapped those identified by Huber-Net and / or MSE- 
et, w hile onl y 17 overla pped those identified by MR- 
ET and / or CLR, indicating it is more similar to Huber- 
et and MSE-Net methods rather than MRNET and 

LR (Figure 5 ). Since 24, 26 and 24 out of 50 regulatory 
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Figure 5. The Venn diagram that shows the overlaps of regulatory relation- 
ships between 23 transcription factors and lignin pathway genes identified 
by Huber-Net and MSE-Net, CLR, MRNET and TIGRESS methods. 
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relationships identified by Huber-Net overlapped those
identified MRNET, CLR and TIGRESS, respecti v el y, w hile
21, 19 and 21 out of 49 r egulatory r elationships identified by
MSE-Net overlapped those identified MRNET, CLR and
TIGRESS, respecti v ely (Figure 5 ), Huber-Net and MSE-
Net have their values in identifying unique true regulatory
relationships. 

DISCUSSION 

Solving convex optimization problem by implementing
APGD 

The loss functions and the penalty functions we used in this
study are all conv e x functions ( 26 , 39 ). Although CVX is the
software commonly used for solving conv e x optimization
prob lems( 44 ), but one ov ert prob lem of CVX is its slow-
ness when being used for large datasets. In this study, we
implemented an APGD algorithm ( 45 ) to replace the CVX.
APGD is an effecti v e algorithm to solv e an optimization
problem with a decomposable objective function. Our sim-
ulation studies have shown that APGD was not only capa-
ble of obtaining the similar estima ted regula tion ef fects of
all TGs for a gi v en TF, but it also shortened the computa-
tion time to 1 / 5 of that by using CVX, enabling the predic-
tion of true TGs of a TF from a large number of candidate
TG genes (e.g. > 30 000 as demonstrated in Supplementary
Figure S2). In principle, CVX cannot be used to calculate
the stable selection probability. Stable selection probability
is calculated based on the ratio of the number of non-zero
estima ted regula tion ef fects of a TG to the number of times
we resampled in the half-sample approach, and all candi-
date tuning parameters. When using APGD, we can obtain
a subset of TGs with non-zero regulation effects, and the
rest subsets of TGs with zero regulation effects. Ther efor e,
we do not need to choose threshold by a ppl ying APGD to
the half-sample approach. 

Development and elucidation of six novel methods for identi-
fying TGs of a TF 

With the improved new APGD algorithm, we set out to
de v elop nov el methods to predict the TGs of a TF of in-
terest using omics data, an important issue that has not
been resolved in current bioinformatics. Using two loss
functions, Huber and MSE, and three penalty functions,
Lasso, ENET and Net, we de v eloped four statistical selec-
tion methods, MSE-ENET, Huber-ENET, MSE-Lasso and
Huber-Lasso for identifying TF–TG relationships, and two
additional methods, MSE-Net and Huber-Net, for build-
ing pathway GRNs. The Huber loss function, which is a
hybrid of squared errors for relati v ely small errors and ab-
solute errors for relati v ely large errors (see Formula ( 3 )),
has been shown to be more robust than MSE loss func-
tion when there are outliers ( 48 ). To test the four TF–TG
identification methods, we used the synthetic data gener-
ated from the general setting and found that ENET-based
methods performed better than Lasso-based methods if all
TGs are independent (Figure 1 ). When the two network
settings were used to test all six methods and the three
comparison methods, the MSE-Net and Huber-Net out-
performed the other four non-Net methods since the Net
penalty could incorporate the network structure of TGs for
enhancing the prediction. Notably, one tuning parameter
λ from Lasso penalty and two tuning parameters α and λ
from ENET or Net penalty were obtained from the cross-
v alidation b y minimizing the predicted accuracy ( 21 , 49 ).
Howe v er, the results are not stable since the samples were
randomly split in the cross-validation ( 26 ). Fortunately, a
stability selection method has been de v eloped by Mein-
shausen and B ̈uhlmann ( 46 ) that uses a subsampling ap-
proach to obtain a stable selection result; this subsampling
approach can be used to determine the amount of regular-
ization. In this study, we employed the selection probabili-
ties to evaluate and select candidate TGs of a gi v en TF. 

Plant biolo gists frequentl y employ a transient system or
de v elop transgenic lines to perturb a TF, as shown in Fig-
ure 6 ; (i) this is followed by RNA-seq experiments to obtain
the transcriptomic data; after the DEGs pertaining a gi v en
TF are identified, biolo gists usuall y selected some DEGs
based on their significant le v els (e.g. corrected P -values or
q -values) to validate their functions; (ii) using a correlation
method ( 50 ), a dependence-based method ( 11 , 51 ) or a mod-
eling method to identify candidate genes to validate ( 52 );
(iii) using top-down GGM algorithm ( 16 , 17 , 53 , 54 ) to pre-
dict TGs of the TF from the DEGs; Howe v er, correlation
and independence-based methods usually have a low accu-
racy and top-down GGM algorithm suffers from constraint
to scaling up due to the high computational cost of search-
ing the space of a complete combination of a subset of can-
didate genes. For this r eason, ther e is a pressing need to
de v elop efficient methods for identifying the true TGs of a
gi v en TF. In addition, ther e ar e some other circumstances
where we need new methods to identify or validate the TGs
of a TF. For example, when genome-wide experiments like
ChIP-seq and DAP-seq are conducted to identify putati v e
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Figure 6. An integrati v e frame wor k for identifying target genes (TGs) of a transcription factor (TF) of interest using transcriptomic data by integration of 
statistics, machine leaning and conv e x optimization. 
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Gs of a TF, a few hundred to e v en twenty thousand puta-
i v e TGs can be identified, indicating that their promoters 
ontain TF binding site. Howe v er, the presence of a TF- 
inding site of the TF does not necessarily guarantee an 

ctivation. We need highly efficient methods to validate the 
xistence of an effect-and-r esponse r elationship between the 
F and the putati v e TGs identified by ChIP- / DAP-seq. In 

his sense, our methods, Huber-ENET, Huber-Lasso, MSE- 
NET and MSE-Lasso, fill in a gap of lacking an effec- 

i v e method for predicting and / or validating TGs of a TF
f interest using large-scale omics data. Such methods are 
ought by many biologists. Our methods resampled a large 
umber of subsets of data (e.g. 500) to compute the selec- 
ion probabilities of all genes to one TF sim ultaneousl y, and 

hen selected top-ranked TGs based on the stabilities of se- 
ection probabilities across all subsets. Ther efor e, our meth- 
ds augmented the selection process and increased the re- 

iability of TGs. Even if each time we computed linear re- 
ationships of one TF with all genomic genes or the DEGs 
esulting from the TF ov ere xpression with one re-sampled 

ubset, the aggregation of the selection probabilities from 

ll sampled subsets could increase the chance of the nonlin- 
ar true relationships being captured. 

Instead of identifying TGs of a TF independently, we 
ometimes need to investigate if a TF regulates a pathway 

r a biological process. In this case, we can determine if a 

F’s TGs contain multiple genes belonging to a pathway or 
 gene ontology that r epr esents a biological process. Toward 

his goal, we de v eloped Huber-Net and MSE-Net methods 
ased on a network-based penalty. In our e xtensi v e sim- 
lation studies based on the network setting, we showed 

hat Huber-Net and MSE-Net performed better than the 
ther four methods in terms of the true positi v e discov- 
ry rates. We then applied these two methods to identify 

rue TGs of 23 TFs, which are known to regulate lignin 

athway ( 34–38 ), from all 2539 pathway genes (PWGs) of 
aize. 
he power of statistics, machine learning and optimization 

ombined approaches 

n this study, we combined statistics (half-sample approach- 
eri v ed selection probability), machine learning (regular- 

zation in unsupervised learning) and conv e x optimization 

solving regularization with APGD) to identify TGs of a TF 

f interest, the flowchart depicting the methods is illustrated 

n Figure 6 . Our results showed that this kind of combined 

pproach has higher efficacy in identifying the true TGs, as 
e shown early ( 21 ). 
In our methods, we utilized two loss functions. The Hu- 

er loss function is a combination of linear and quadratic 
oss functions, and the MSE loss function, which measures 
he average of the squared errors, ensures that our trained 

odel has no outlier predictions with huge errors. MSE 

uts more weights on these errors due to the squared por- 
ion of the function. The ma thema tical benefit of MSE is 
articularly evident in its use at analyzing the performance 
f linear r egr ession, as it allows one to partition the varia- 
ion in a dataset into variation explained by the model and 

 ariation explained b y randomness. Huber loss is more ro- 
ust to outliers than MSE loss and least absolute deviation 

LAD) loss, and has higher statistical efficiency than the 
AD loss function in the absence of outliers ( 48 ). 
In addition, we utilized three different penalty functions: 

asso, ENET and Net. Lasso penalty adds a penalty for 
on-zero coefficients to penalize the sum of their absolute 
alues ( l 1 penalty). As a result, for high values of λ, many 

oefficients are exactly zero under Lasso. ENET penalty 

as proposed in response to the critique that the the vari- 
ble selection of Lasso only considers the absolutely value 
f estimated effects, resulting in instability. ENET penalty 

ombines the penalties of ridge r egr ession and Lasso to 

ain ‘super-penalty’. Net penalty can incorporate a set of 
enes like a pathway or a biological process as r epr esented 

y a gene ontology, and enables us to investigate if a TF 
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regulates multiple genes involved in a pathway or a biology
process. When TGs of multiple TFs are predicted, we can
then use the results to screen the TFs for regulation of a
specific metabolic pathway, biological process and complex
trait. 

We demonstra ted tha t the improved APGD had less com-
putational complexity for solving the conv e x optimization
problem with both differentiable and undifferentiable func-
tions. Traditional regularization methods need to choose
optimal tuning parameters. One limitation of traditional
regularization methods with cross-validation is that they de-
pend on the sa tura tion of the da ta; dif ferent da ta sets may
obtain different tuning parameter sets, leading to different
or unstable results. APGD is a highly efficient approach to
solve our proposed methods as well as the other penalized
r egr essions.The incorporation of half-sample-based selec-
tion probability allows for more stable results and avoids the
choice of optimal tuning parameters. Ther efor e, integration
of statistics, machine learning and optimization enables us
to take the advantage of all methods and combines them to
generate a powerful approach to identify true TGs of a TF
with high efficacy. 

Due to the disadvantage of the feature selection proce-
dure, we cannot check if the selected genes have strong evi-
dence related to the outcome. For future studies, we plan to
integra te sta tistical inference in the selection procedure and
further investigate the selection performance by integrating
both selection and statistical inference. 

CONCLUSIONS 

Four new statistical selection methods, r eferr ed to as Huber-
ENET , MSE-ENET , Huber-Lasso and MSE-Lasso for
identifying TGs of a TF of interest and two new methods,
Huber-Net and MSE-Net, for inferring pathway GRNs
hav e been de v eloped by integra tion of sta tistics, machine
leaning and conv e x optimization approaches. An APGD al-
gorithm was de v eloped to solv e conv e x optimization with
significantly reduced computation times. Comprehensi v e
simulations and analyses of the four TF–TG identification
methods using synthetic data under a general setting in-
dica ted tha t Huber-ENET , MSE-ENET , Huber-Lasso and
MSE-Lasso could be used to identify true TGs of a TF with
high efficacy, especially in genome-wide predictions. In sim-
ulations using the data from two network settings, Huber-
Net and MSE-Net outperf ormed an y other non-Net meth-
ods for identifying true TGs involved in a pathway or bio-
logical process. For real data, the Huber optimization has a
noticeable contribution to the identification of true TGs of
a gi v en TF by increasing the selection probabilities as com-
pared to MSE, and Huber-Net and MSE-Net could iden-
tify many unique r egulatory r elationships as compared to
CLR, MRNET and TIGRESS. The ENET penalty func-
tion contributed greatly to enhancement of the method ef-
ficacy as compared to Lasso. AuROC plotting showed that
all six methods could rank more positi v e known TGs to top
of TG lists. The TF–TG identification methods de v eloped
will fill a methodolo gical ga p for genome-wide TF–TG pre-
diction and have a great potential for being used to validate
ChIP / DAP-seq results, while the Net-based methods will
be instrumental for inferring pathway GRN. 
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