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Abstract

We have modified a multitude of transcription factors (TFs) in numerous plant species and some animal species, and obtained
transgenic lines that exhibit phenotypic alterations. Whenever we observe phenotypic changes in a TF’s transgenic lines, we
are always eager to identify its target genes, collaborative regulators and even upstream high hierarchical regulators. This
issue can be addressed by establishing a multilayered hierarchical gene regulatory network (ML-hGRN) centered around a
given TF. In this article, a practical approach for constructing an ML-hGRN centered on a TF using a combined approach of top-
down and bottom-up network construction methods is described. Strategies for constructing ML-hGRNs are vitally important,
as these networks provide key information to advance our understanding of how biological processes are regulated.
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Background

A multitude of transgenic lines of various transcription factors
(TFs) have been developed in various plant and some animal
species. Overexpression or suppression of a TF of interest often
leads to phenotypic changes; some of these changes are readily
visible, whereas others, such as anatomical changes, are subtle
and discernible only via microscopy. In such circumstances, we
can endeavor to identify target genes of the TF of interest by
examining genome-wide expression data generated either from
its stable transgenic lines or from a transient expression
system. While elucidation of target genes is likely to be the pri-
mary goal, there may also be interest in determining collabora-
tive regulators associated with a particular TF as well as its
upstream regulators. By identifying and annotating the genes
surrounding a TF in a hierarchical gene regulatory network
(hGRN), we can significantly improve our understanding of why
the altered expression of a particular TF results in the pheno-
typic changes observed in the transgenic plants.

We recently developed a top-down graphic Gaussian model
(GGM) algorithm [1], a bottom-up GGM algorithm [2, 3] and

backward elimination random forest algorithm (BWERF) [4]. The
top-down GGM algorithm enables the construction of a two-
layered hGRN mediated by a TF, whereas the bottom-up GGM
and BWERF [4] allow for the construction of a multilayered-
hGRN (ML-hGRN) that operates immediately above a pathway
or biological process. Experimental validation of the ML-hGRN
derived from both the top-down and bottom-up GGM algo-
rithms suggests that both approaches are highly accurate [1, 3].
When used jointly, these methods enable us to reconstruct a
ML-hGRN centered around a TF using gene expression data gen-
erated from properly designed experiments. In this review, we
will examine the principles underlying each of these algo-
rithms, discuss strategies for using the algorithms and describe
methods for generating data required for accurate reconstruc-
tion of a ML-hGRN centered around a TF.

Top-down GGM algorithm

The top-down GGM algorithm can be used to infer one or two
layers of ML-hGRNs using high-throughput gene expression
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data generated either from stable transgenic lines or from a tran-
sient expression system in which TF expression is perturbed.

The top-down GGM algorithm builds an ML-hGRN in two
steps: (1) identification of TF-responsive genes from differ-
entially expressed genes (DEGs), and (2) identification of
TF-responsive DEGs that have causal relationships with the
given TF using the triple gene model shown above.

1. Identification of TF-responsive genes from DEGs

Using high-throughput gene expression data generated either
from transgenic lines (stable overexpression or suppression) or
from a transient system, DEGs can be identified by comparing
data from one line with that from the corresponding control
using appropriate methods. These methods include edgeR [5],
DEseq [6], vst-limma [6, 7] and voom-limma [7] for RNA
sequencing (RNA-seq) data, and Rank Product [8], Weighted
Average Difference [9] and Moderated T-Statistics [7] for micro-
array data. Next, TF-responsive DEGs can be evaluated and po-
tentially used as inputs to build the layer immediately below
the TF in the ML-hGRN. Eliminating DEGs that are not closely re-
sponsive to the TF’s overexpression or downregulation will de-
crease noise that reduces the accuracy of the triple gene model.
To eliminate irrelevant DEGs, we used Fisher’s exact test in con-
jugation with a condition probability method for DEG reduction
in our top-down GGM algorithm [1]. Briefly, the significance of
dependence between each DEG and the TF was examined using
Fisher’s exact test [10, 11] with a null hypothesis of independ-
ence between the TF and DEG. When the TF and a target were
dependent, we continued to test which type of the DEG’s re-
sponse concordance was significant using the following
hypotheses: H0¼one of the four types of responses is significant
(null hypothesis) and Ha¼none of the four types of responses is
significant (alternative hypothesis). The four types of response
concordance are defined as follows: concurrence (Type I), one-
level lag (Type II), two-level lag (Type III) and three-level lag
(Type IV) [1]. Concurrence describes a phenomenon in which a
DEG closely follows the overexpressed TF of interest, and their
relative expression values are always in the same discretized
levels. One-level lag indicates that the DEG lags by one level re-
garding its relative expression levels compared with those of
the overexpressed TF. If any of the four types of concordance
has a P-value exceeding the significance level, then the type
with the largest P-value is considered the most significant. The
details for testing the four types of concordance using Pearson’s
chi-square test are provided in our earlier publication [1].
Although both Fisher’s exact test and probability methods can
help reduce noise, the efficiency of the probability method is
limited when the sample size is small. In that circumstance, the
probability test for concordance between the TF and DEGs can
be omitted without significantly affecting the outcome; this is
the case because the use of Fisher’s exact test appears to be suf-
ficient for eliminating the majority of irrelevant genes.

2. Identification of TF-interfering genes using the triple
gene model

Triple gene model and identification of interference
Triple gene model uses a first-order correlation to evaluate causal
relationships among three genes (Figure 1A). Given a pair of can-
didate target genes, x and y, we can examine whether the pres-
ence of the TF, z, makes their coordination tighter or looser. We
first calculate Spearman’s partial correlation coefficient between
x and y in the absence of z using the formula rxyjz ¼ pcorðx; yjzÞ,

which represents the correlation between x and y after the effect
of z on the genes is removed. We then compare rxyjz with the x
and y correlation coefficient rxy, where rxy is Spearman’s rank cor-
relation coefficient (rho) for variables x and y [12] when the effect
of z is present. If z interferes with x and y, there should be a sig-
nificant difference between rxy and rxyjz. Based on this assump-
tion, we implement the following procedure to determine
whether z has causal relationships with x and y.

A. If rxy is significant and rxyjz ¼ 0 (insignificant) or vice versa,
then z interferes with x and y.

B. If both rxy and rxyjz are significant, we need to test the signifi-
cance of the difference d ¼ rxy � rxyjz. The standard error of
the difference can be calculated using the multivariate delta
method as described previously [13]. The Z score can be cal-
culated using the formula Z ¼ d=SED, which follows a normal
distribution. If the P-value is significant, we can then con-
clude that z interferes with x and y.

C. When z interferes with x and y, z! x and z! y are recorded.

Top-down GGM algorithm
Expression data for the identified TF-responsive genes can be
used as inputs for causality analysis using the triple gene model
to infer the next one or two layers, namely, the second and
first layers, which contain the direct and indirect target genes of
the given TF, respectively (Figure 1A). For each combination of
three genes, which includes a TF in an upper layer and two
TF-responsive candidate genes in the lower layer, if the TF
significantly interferes with the two TF-responsive genes, then
the TF is said to control the two genes and their regulatory re-
lationships (edges) are recorded. When all combinations of
the TF and two TF-responsive candidate target genes have
been evaluated, the interference frequency between the TF
and each TF-responsive candidate target gene is calculated;
the TF-responsive candidate target genes having the highest
frequency are retained in the second layer. As not all
TF-responsive candidate target genes retained at the second
layer are TFs, the next layer (namely, the first layer) is generated
in top-down fashion only from each TF present in the second
layer (direct targets) by recursively calling the top-down GGM al-
gorithm, as shown in Figure 1A. To generate the first layer from
a TF present in the second layer, the responsive genes for this
TF are identified from the remaining DEGs, excluding the genes
retained in the second layer. The core algorithms of triple gene
interference and top-down GGM are shown below:

Core algorithm of triple gene interference for top-down
(TGI-TD)

1. procedure
2. Input: Expression profiles of (Z, G), where G are candidate

targets of a regulatory gene Z
3. for each pair of (Xi; YjÞ; where (Xi; YjÞ 2 G do
4. if rxy is significant and rxyjz ¼ 0 (insignificant) or vice versa
5. Z interfere Xi and Yj, then
6. Z! Xi and Z! Yj;

7. else if both rxy and rxyjz are significant, then
8. if d ¼ rxy � rxyjz is significant after being tested with multi-

variate delta method, then
9. Z interfere Xi and Yj, then

10. ðEZ!Xi
and EZ!Yi

Þ ! Nz, where Nz hosts edges between Z
and inferred targets

11. NZ!Xi
þþ; NZ!Yi

þþ; the number of each edge increases 1
12. Else
13. discard (Xi and Yj), go to step 2
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14. else if rxy ¼ 0 ðinsignificant) and rxyjz ¼ 0 (insignificant)
15. discard (Xi and Yj), go to step 2
16. end for
17. output: (1) GI

Z sorted by interference frequency of Z; (2) Nz

network contains interfered edges
18. end procedure

Top-down GGM algorithm

1. procedure
2. Input: D data of n samples from tissues where Z (a TF) is

overexpressed;
3. do DEG D; DEG hosts differentially expressed genes

(DEGs);
4. if DEG 6¼ 0 do
5. Gr

Z  DEG; where Gr
Z holds responsive genes to Z (by Fisher

Exact test &&/j j concordance test)
6. else
7. end procedure
8. if Gr

Z 6¼ 0 do
9. Gi

Z  TGI-TD (Z, Gr
Z); where Gi

Z holds genes sorted by inter-
fered frequency of Z in descending order;

10. Nz TGI-TD (Z, Gr
Z);

11. Gi
ZðkÞ  sig ðGI

Z); # keep most significant k genes to current
layer immediately below the TF’s

12. else
13. end procedure
14. for a new Z

0
in Gi

ZðkÞ && DEG
0 ¼ DEG� Gi

ZðkÞ do
15. Step 3–10 to build next layer
16. end of for
17. end procedure

An example to illustrate use of the top-down GGM algorithm
The top-down GGM algorithm was first applied to RNA-seq data
sets generated from a time course experiment (7, 12 and 25 h

after the perturbation of TF) in which the TF, SND1, was transi-
ently overexpressed in protoplasts isolated from developing
xylem. There were three biological replicates at each time point.
The blank plasmid (i.e. no SND1) was used to transfect protoplasts
to generate control samples for each time point. Using the edgeR
algorithm, we identified 178 DEGs across the three time points.
The expression profiles of these 178 DEGs and that of SND1 were
used as inputs for building the ML-hGRN regulated by SND1. The
third layer was generated by extending from two TF genes located
in the second layer. In total, 16 genes selected from Layer 2 and 16
from Layer 3 were validated by Chromatin Immunoprecipitation-
Polymerase Chain Reaction (ChIP-PCR) using an antibody against
SND1. All 16 genes from Layer 2 were true targets of SND1,
whereas only 1 of 16 genes in Layer 3 was a true target of SND1
indicating that 97% (31 of 32) of the relationships inferred by the
top-down GGM algorithm were correct. This ML-hGRN governed
by SND1 can be found in our previous publication [1].

Bottom-up network construction approaches
Bottom-up GGM algorithm

Initially, genes involved in a metabolic pathway or biological
process (as defined by gene ontology) were used as inputs for
the bottom layer, whereas all TFs or differentially expressed TFs
were used as inputs for constructing the upper layers [2, 3]. The
method by which genes involved in a biological process of inter-
est are obtained depends largely on the experiments from
which the gene expression data were generated. DEGs from ex-
periments involving two or more treatments can be easily iden-
tified through multiple pairwise comparisons of data from
different conditions or treatments, and biological processes of
interest can be identified via gene ontology enrichment ana-
lyses of DEGs. When a single experiment includes multiple time

A B C

Figure 1. Triple gene model and how to use it for constructing an ML-hGRN. (A) Triple gene model for top-down GGM algorithm; (B) triple gene model for bottom-up

GGM algorithm; (C) BWERF for bottom-up network work construction.
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points, each with more than one treatment condition, the en-
riched biological processes identified at each time point can be
summed. The importance of biological processes that are en-
riched at only one time point and the importance of those that
are enriched across multiple time points need to be weighed
properly based on experimental goal and present knowledge.
The identification of enriched biological processes is further
complicated when compendium data sets pooled from multiple
experiments are used. These issues are beyond the scope of this
review, however, and will not be discussed further.

One efficient why to construct a ML-hGRN above a bottom layer
of genes is to use the triple gene model, as illustrated in Figure 1B.
Each evaluation involves three genes, including two genes from
the current bottom layer and a candidate TF, which may be chosen
from all TFs or the differentially expressed TF pool. These three
genes are then used to build the next layer above. When a TF sig-
nificantly interferes with the two bottom-layer genes (false discov-
ery rate (FDR)-corrected P-value< 0.05), the regulatory relationship
(edge) between the TF and each gene (edge) is recorded. After all
combinations are evaluated, the interference frequency of each TF
for all pathway genes is calculated and sorted. TFs with the highest
interference frequencies are retained in the second layer; the num-
ber retained can be determined empirically or by a weighted sparse
canonical correlation analysis method [2]. At this point, the second
layer will be used as the bottom layer, and the remaining TFs will
be used as inputs to obtain the third layer by repeating the afore-
mentioned procedure. We can construct an ML-hGRN in a layer-
by-layer fashion until the expected number of layers is obtained or
the program terminates automatically when there are no more
layers that can be built. The core algorithms of triple gene interfer-
ence and bottom-up GGM are shown below:

Core algorithm of triple gene interference for bottom-up
(TGI-BU)

1. procedure
2. Input: (Z, B), where Z contains a number of TFs while B con-

tains genes of current bottom layer
3. foreach combination of (Xi;YjÞ; where (Xi;YjÞ 2 B; test all

genes in Z do
4. if rxy is significant and rxyjz ¼ 0 (insignificant) or vice versa
5. Zk interfere Xi and Yj, then
6. Zk ! Xi and Zk ! Yj;

7. else if both rxy and rxyjz are significant, then
8. if d ¼ rxy � rxyjz is significant after being tested with multi-

variate delta method, then
9. Zk interfere Xi and Yj, then

10. ðEZk !Xi
and EZk!Yi

Þ ! Nz, where Nz contains edges be-
tween Z and inferred targets

11. NZ!Xi
þþ; NZ!Yi

þþ; the number of each edge increases 1
12. else
13. discard (Xi and Yj), go to step 2
14. else if rxy ¼ 0 ðinsignificant) and rxyjz ¼ 0 (insignificant)
15. discard (Xi and Yj), go to step 2
16. end foreach
17. output: (1) Zlsorted by interference frequency on all

bottom-layered genes in B;
18. (2) Nz network contains interfered edges
19. end procedure

Bottom-up GGM algorithm

1. procedure
2. Input: D high-throughput expression data of n samples
3. do DEG D; where DEG holds differentially expressed genes;

4. if DEG 6¼ 0 do
5. Gb  DEG; where Gb-genes involved in a biological process/

pathway of interest
6. Z All TFs or TFs in DEG
7. else
8. end procedure
9. if Gb 6¼ 0 && Z 6¼ 0 do

10. Zi  TGI-BU (Z, Gb); where Zi holds TFs sorted by their inter-
fered frequency

11. Nz  TGI-BU (Z, Gb);
12. ZiðkÞ  sigðZiÞ; # keep most significant genes to current

layer immediately above bottom layer
13. else
14. end procedure
15. foreach a new Z

0 ¼ Z� ZiðkÞ and a new G
0

b ¼ ZiðkÞ do
16. Step 3–14 to build next layer
17. end of foreach
18. end procedure

The bottom-up GGM algorithm has been used to construct an
ML-hGRN using RNA-seq data from nine independent poplar
stable transgenic lines of Ptr-miR397 (under the control of the
cauliflower mosaic virus promoter, CaMV 35 S) and three wild-
type lines [3]. The nine transgenic lines were selected to include
lines with high, medium and low Ptr-miR397a expression to
maximize its variation. In total, 459 DEGs were identified by
comparing the transgenic lines with the wild-type controls. The
bottom layer included 17 differentially expressed laccase (LAC)
genes and four peroxidase genes that are postulated to func-
tion in lignin polymerization. Additionally, 1208 TFs plus Ptr-
miR397a were used as regulatory genes for bottom-up network
construction. A three-layer hGRN was obtained. The causal rela-
tionships between Ptr-miR397a and the LAC genes were cap-
tured using the bottom-up GGM algorithm. Of 17 LAC genes, 13
were identified as direct targets of Ptr-miR397a. Five of these
LAC genes were randomly selected for experimental validation,
and all were proven to be true targets of ptr-miR397 [3].

Using BWERF

In addition to the bottom-up GGM algorithm, a BWERF algo-
rithm [4] has been developed for constructing the ML-hGRN
operating above a biological pathway or process (Figure 1C). For
each pathway/process gene in the bottom layer, the BWERF al-
gorithm uses a random forest model not only to calculate the
importance values for all TFs, as they relate to genes in the bot-
tom layer, but also to remove some of the least important TFs.
For example, the least important 10% of TFs are excluded in
each round of modeling. In each new round, importance values
are updated and ranked; this procedure, termed BWERF, con-
tinues until only one TF is retained. Afterward, the importance
value for each TF, as it relates to all pathway genes is aggregated
and fitted to a Gaussian mixture model to clarify TF retention
for the second layer immediately above the bottom layer. The
TFs retained in the secondary layer are then set as the new bot-
tom layer to infer the third layer, and this process is repeated
until the expected number of layers is obtained or the program
terminates automatically.

BWERF improves the accuracy for constructing ML-hGRNs
because it uses backward elimination to exclude noise-causing
genes and aggregates the individual importance values
for determining TF retention. We validated the BWERF algo-
rithm by using it to construct ML-hGRNs operating above a
mouse pluripotency maintenance pathway and an Arabidopsis
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lignocellulosic biosynthesis pathway. Like GENIE3, the cham-
pion of the DREAM4 in silico network challenge (http://dreamchal
lenges.org/project/dream4-in-silico-network-challenge/), BWERF
also uses random forest, but has backward elimination process
to augment the emergence of true TFs, as the noise variables
are eliminated. The pronounced effect of BWERF is fully dis-
played in Figure 2, where the rankings of the true regulatory
genes with medium-level regulatory strengths were signifi-
cantly elevated. Compared with the bottom-up GGM algorithm,
BWERF can construct ML-hGRNs with significantly reduced
edges that enables biologists to choose edges more easily for ex-
perimental validation. For example, the two ML-hGRNs built
above the lignocellulosic pathway using bottom-up GGM and
BWERF and the same input data set have 576 and 88 edges, re-
spectively, and the average connectivities in the two networks
are 6.9 and 1.8 edges, respectively. A flowchart of BWERF is
shown in the original publication [4] to facilitate the under-
standing of detailed procedures of this algorithm.

The use of top-down and bottom-up
approaches to construct an ML-hGRN centered
around a TF

When overexpression or suppression of a TF leads to pheno-
typic changes, we can obtain an ML-hGRN centered around the
TF by sequentially using the top-down GGM algorithm and
bottom-up approaches, namely, the bottom-up GGM or BWERF
algorithms. The framework and detailed procedures for con-
structing ML-hGRNs are illustrated in Figure 3. As illustrated in
Steps 1 and 5 (Figure 3), two RNA-seq (or two microarray experi-
ments) are required: one that yields data for the top-down GGM
algorithm and the other to provide data for the bottom-up
approaches (Figure 3). In some situations, however, data pro-
duced from a single experiment can be used for both the top-
down and bottom-up approaches.

Experiments to generate data for the top-down GGM
algorithm

Two different experimental systems can be used to generate
the RNA-seq or microarray data for the top-down GGM

algorithm (Step 1, Figure 3). The first is a transient expression
system in which plasmids carrying the TF are infiltrated or in-
jected into newly plant cells or tissues that include protoplasts
[1, 14], leaves [15], cotyledonary explants [16], young cuttings
[17] and roots [18], or animal cell lines or tissues using, for ex-
ample, electroporation [19, 20] and a stearylated cell-
penetrating peptide (CPP)-based transfection methods [21].
Infiltrated/transfected cells or tissues can be harvested in a
short time series. As plant protoplasts usually survive for 48 h,
transfected protoplasts can be harvested at 6, 12, 24 and 36 h; at
least three biological replicates should be used for each time
point to ensure the quality of DEGs. To increase the accuracy of
DEG identification, protoplasts infiltrated with a blank plasmid
vector are used as controls and should be harvested at the same
time points (i.e. 6, 12, 24 and 36 h). For plant tissues, the peak of
transient expression generally appears at 72–120 h; therefore,
harvesting infiltrated tissues at 48, 72, 96 and 120 h is suggested.
DEGs identified at multiple time points can be merged and used
collectively as inputs for the top-down GGM algorithm.

The second experimental system for producing data for the
top-down GGM algorithm involves taking advantage of existing
stable transgenic lines. If the trans-TF is under the control of a
promoter other than the constitutive 35 S promoter, then tem-
poral changes in the expression of the TF should be investi-
gated. When a TF has dramatically varying expression levels
within a day or a short developmental period, a few or even a
single transgenic line can be used and harvested in a time ser-
ies. The goal is to generate gene expression profiles in which
the trans-TF varies in its expression throughout the time course
of experiment. However, if a TF is under the control of the con-
stitutive 35 S promoter or does not exhibit dramatic changes in
expression over a period of time, more independent stable
transgenic lines of this TF with different expression levels are
anticipated. Under this circumstance, plant materials may not
be harvested from multiple transgenic lines in a time series; in-
stead, one sample is harvested from each line at the same time
to generate a ‘pseudo-profile’ in which the TF has varied expres-
sion levels across different lines. As demonstrated previously
[3], a data set was generated from nine independent Ptr-miR397a
transgenic lines with varied Ptr-miR397 expression levels as well
as three wild-type lines to enable construction of an ML-hGRN.

Figure 2. The effect of recursive elimination of noise variables (genes) on the final rankings of true variables when a simulate data set containing 5 positive variables

and 1000 noise variables was used. Only the top 15 variables (X axis) emerged from 1000 variables that were subjected to GENIE3 and the BWERF algorithms are shown.

Green bars: true positives, red: noise variables. The boxplots were based on 30 rounds of BWERF with an elimination rate of 10%.
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Conclusive evidence regarding which of these experimental
systems yields a ML-hGRN with more authentic regulatory rela-
tionships has not yet been obtained.

Experiments to generate data for the bottom-up GGM
algorithm

As shown in Figure 3, once we obtain a TF-mediated two-layered
hGRN using the top-down GGM algorithm, then Layer 2 (Figure
3D), which contains the predicted direct target genes of the TF,
can be used as the bottom layer for a bottom-up approach. This
approach involves the use of either the bottom-up GGM or
BWERF algorithm and, as a result, transforms the existing two-
layered hGRN into an ML-hGRN. The data sets needed for

bottom-up construction require careful consideration. One possi-
bility is to use the same data that was used for the top-down
GGM algorithm; one concern with this practice, however, is that
strong relationships between the TF and direct target genes in
Layer 2 may overwhelm relationships between other regulators
and Layer 2 genes, making it difficult to identify additional regu-
lators that are at the same or a higher hierarchical level as the TF.
Although, at present, we cannot assess the ‘overwhelming effect’
of a TF, we have used data produced from nine Ptr-miR397a-over-
expressing lines to build an ML-hGRN; when the direct target
genes, LAC family members, of Ptr-miR397a were used as bottom
layer, and 1208 TFs plus Ptr-miR397 were used as inputs for the
bottom-up GGM algorithm, we obtained a four-layered hGRN
containing both Ptr-miR397a (in the second layer) and multiple

Layer 2

Differentially expressed genes

Responsive Genes

RNA-seq experiment

Top-down GGM Algorithm

Layer 1 

RNA-seq experiment

Bottom-up GGM
or

BWERF  

1

2

3

4

5

6

7

A
B

CD

E
F

GH

Transgenics         Wildtype Fisher’s exact test 
and /or 

Probability Method

Layer 1 

Layer 2

Layer 3

Layer 4

Layer 5

TF of Interest

Figure 3. Illustration of using the top-down GGM algorithm followed by bottom-up approaches, bottom-up GGM or BWERF, to construct ML-hGRN.
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well-known wood formation regulatory genes [3], including
PtrMYB42, PtrMYB48, PtrMYB 52, PtrMYB021, VND1 and NST1 [22].
This example illustrates that data generated for the top-down
GGM algorithm can, in fact, be used again for the bottom-up GGM
algorithm to construct a multilayered hGRN that contains an ag-
gregate of functionally collaborative TFs.

A second possibility is to generate a new data set specifically
for bottom-up construction using a RNA-seq experiment (Figure
3, Step 5), which should be carried out under the same or similar
experimental conditions as used for RNA-seq experiment at Step
1 (Figure 3). The use of the same or similar experimental condi-
tions guarantees that regulatory relationships existing in the
lower and upper layers of the ML-hGRN built with two data sets
are authentic for that condition. When designing an RNA-seq or
microarray experiment for bottom-up network construction, we
need to consider if the gene profiles produced have sufficient
length for recognizing or differentiating regulatory interactive
events. This is a complicated issue that has been discussed in the
literature [23, 24]; the answer is contingent on many variables
that include considerations of how the data will be used and
what kinds of methods or algorithms will be used. For the
bottom-up method, we have previously used data sets with 12

samples (nine independent transgenic lines plus three control
samples) [3] or 24 samples of six time points (two treatments ver-
sus two controls at each time point) [25]. In the future, it will be
fascinating to investigate whether use of one data set for both
the top-down and bottom-up approaches produces different re-
sults from use of data sets from two separate experiments.

Additional guidelines of experimental design for producing
interactive gene expression profiles are elaborated in our previous
review paper [26], and interested readers may consult this review
article and our previous publications [1–4, 27] for more details.

Demonstration of the feasibility of top-down and
bottom-up network construction algorithms with real
gene expression data sets

Construction of an ML-hGRN centered on SND1
The aforementioned data set (Accession #: GSE49911, Gene
Expression Omnibus, NCBI) resulting from SND1 transient over-
expression in xylem-derived protoplasts of Populus trichocarpa
was used for top-down GGM algorithm. The inputs include the
expression profiles of SND1 and 178 DEGs, and only one layer

B

A

Figure 4. The ML-hGRN built using top-down GGM algorithm followed by bottom-up GGM algorithm. The input data set was generated from protoplasts of the develop-

ing xylem of P. trichocarpa through transient overexpression of SND1 gene and RNA-seq technology. The data set (GSE49911) is available in Gene Expression Omnibus

(GEO), NCBI. Green nodes: bottom-layer genes; purple node: known positive regulators of wood formation.
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immediately below SND1 was built (Figure 4A). Then, the 30
inferred targets genes of SND1 with the highest interference fre-
quency were used as the bottom layer and the expression pro-
files of 1284 TFs were used as inputs for upper layers to
construct a four-layered hGRN using bottom-up GGM algorithm
(Figure 4B). Note that the SND1 was built into the network again
during bottom-up network construction process (Figure 4B). The
SND1 responsive genes (Supplementary Table S1), interfered
genes (Supplementary Table S2) and network (Supplementary
Table S3) are all provided in the Supplemental Excel File. The
purple nodes in Figure 4B contain those genes that are evi-
denced by existing literature to regulate wood formation. These
genes include MYB36 [28], ARF5 [29], HB-8 [30], MYB83 [31],
NAC075 [32], WLIM1 [33], NST1 [22], VOZ1 [34] and VNI2 [35]. The
regulatory roles of some other genes in the ML-GRN may be
implicated by their functions. For example, IAA3, a homolog of
IAA9 controls wood formation in aspen trees [36]. All these facts
suggest the viability of the combined approach.

Construction of an ML-hGRN controlling heart development
The usefulness of the developed network construction
approaches is also demonstrated by constructing an ML-hGRN
governing heart development using a compendium microarray
data set that was described earlier in our publication [37]. Briefly,
the data set comprises 172 microarrays pooled from nine inde-
pendent experiments with the following Gene Expression
Omnibus (GEO) accession IDs: GSE11291, 15078, 19875, 29145,
30495, 3440, 38754, 5500 and 7781. First, 14 genes involved in car-
diac muscle development were identified from existing literature
[38–40] and used as bottom-layered terminal genes. Then, the
profiles of these 14 genes and 1675 TFs were used as inputs to
build an ML-hGRN. The resulting network is shown in Figure 5
and Supplementary Table S4. In this network, 12 regulatory genes
including Ep300 [41], HDAC9 [42], NCOR2 [43], HAND1 [44], SOX17
[45], Ezh1 [46], ZFP161[47], Cited2 [48], GTF2b [49], Mef2a [38], Pias1
[50] and Dazap2 [51] were found to be positive regulators of heart
development. Their annotations and interference frequencies are
shown in Supplementary Table S5. In addition to those known
regulators that are explicitly evidenced to control heart develop-
ment, some other genes in the network have the functions that

indicate they may play a role in regulating heart development.
For example, Pax1 is implicated to control the formation of heart
outflow tract [52], Nr2C2 participates in muscle differentiation
[53] and Dedd controls cell cycle and organ size [54].

ML-hGRNS can provide new biological insights

The ML-hGRN that is best characterized in Escherichia coli has
three layers. The top layer contains seven global, pleiotropic
regulators that regulate 51% of operons in various metabolic
pathways [55, 56]. These global regulators play a role in moni-
toring energetic and nutritional states, sensing environmental
cues and regulating gene transcription by modulating DNA top-
ology of the cells. The middle layer contains 105 TFs that have
more local and dedicated regulation than the global regulators,
and the bottom layer contains 749 terminal genes that include
structural and functional genes. Studies in yeast also demon-
strate that global regulators respond to various cellular cues
[57], environmental factors and stresses [58]. In plants, there is
also evidence for the existence of high hierarchical regulators.
For example, HY5 is defined as a high hierarchical regulator of
transcriptional networks for photomorphogenesis [59, 60], and
PsnSHN2 is a high hierarchical activator that coordinately regu-
lates secondary wall formation through selective upregulation/
downregulation of its downstream TFs that control secondary
wall formation [61]. Mutations of high hierarchical regulators in
some species have been linked to historical or milestone evolu-
tionary events [62, 63]. Middle-level genes in the ML-hGRNs of
five species, including E. coli, yeast, rat, mouse and humans,
show consistent tendencies for collaboration [64], indicating
that middle-level regulators tend to regulate terminal genes in a
collaborative manner. In addition, middle-level regulators can
receive ‘commands’ from multiple high hierarchical regulators
and pass them down to terminal genes, exerting more specific
regulation on structural or functional genes. Such a topology
also provides opportunity for some midlevel genes to serve as
‘control bottlenecks’ in the gene hierarchy [57].

It is clear that the establishment of ML-hGRNs is critically
important to further understanding of the regulation of biolo-
gical processes. I have demonstrated the feasibility of combined

Figure 5. The ML-hGRN that regulates mouse heart development. The network was built using bottom GGM algorithm with the bottom-layer genes being selected from

existing literature and evidenced to participate the cardiac muscle development. Green nodes: bottom-layer genes; purple node: known positive regulators of heart

development.
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top-down and bottom-up approaches in both previous publica-
tions [1–4, 27] and this review article using real gene expression
data. The ML-hGRNs constructed can provide information for
the following purposes: (1) acquisition of an aggregation of most
of TFs functionally associated with the terminal genes in the
bottom layer; (2) creation of a causal map of molecular regula-
tory interactions; (2) generation of hypotheses for perturbation
experimental design and ChIP-seq experiments; (3) selection of
biomarkers within a network; (4) comparative network analysis
for knowledge discovery; (5) identification of high hierarchical
regulators, middle-level specific regulators and terminal genes
as well as top-down ‘chains-of-command’ that can guide gen-
etic engineering efforts.

Comparison with other network construction
methods

Currently, there are no methods that have been developed and
tailored specifically for the construction of ML-hGRNs except
those described above. Though many methods have been de-
veloped for building GRNs, these are not suited for constructing
ML-hGRNs. Methods for constructing GRNs can be classified
into correlation-, mutual information- and probability-based
methods. Correlation-based methods include ParCorA [65] and
GGM [66]. ParCorA uses zero second-order partial correlation as
a measure of interaction between any triple genes, while GGM
uses a novel shrinkage covariance estimator to calculate the op-
timal shrinkage intensity to infer gene association. Mutual
information-based methods include RN [67], ARACNE [68],
MRNET [69], C3NET [70] and MI3 [71]. RN, ARACNE, MRNET and
C3NET use mutual information to evaluate dependency rela-
tionships between each pair of genes followed by additional
filtering strategies to refine networks; MI3 uses mutual informa-
tion to evaluate dependency relationships among three genes,
that is two regulators and one target. This is different from our
triple gene model, as our three genes consist of one regulator
and two target genes. Probability-based methods, such as
Bayesian network, are generally computationally intensive be-
cause learning graphic structures is nondeterministic polyno-
mial time (NP)-hard problem [70]. Moreover, probability-based
methods are generally less efficient than mutual information-
based methods [71].

It is well established that the detection of causal patterns is
more effective in a trivariate setting than in a bivariate context
[72]. Both our top-down and bottom-up GGM algorithms lay the
GGM on the top of a biological triple gene model to infer ML-
hGRNs. Because the triple gene model is based on the well-
accepted theory that two coexpressed target genes are more
likely to be under the control of the same regulatory mechan-
ism, it aligns well with general biological regulatory models,
thereby enhancing the power and accuracy of network infer-
ence. Compared with ParCorA, we introduced the delta method
to examine interference between one regulator and two target
genes for each combination of triple genes. In addition, BWERF
was added and the backward elimination method in BWERF
method makes BWERF more efficient than GENIE3 [73] in recog-
nizing authentic TFs that regulate target genes.

Conclusion

As more TF overexpression lines with discernible phenotypic
changes become available in various plant or animal species, we
can take advantage of these lines and design small-scale

experiments to acquire data for constructing an ML-hGRN cen-
tered around each trans-TF. In many circumstances, stable over-
expression lines can be also superseded by a transient
expression system. A transient expression system may generate
perfect perturbed data for capturing causal relationships, but it is
usually much more difficult to manipulate and produce replic-
able expression across multiple samples. With an awareness of
the availability of top-down and bottom-up approaches and the
corresponding data requirements, one can scale up routine com-
parative RNA-seq or microarray experiments (e.g. treatments ver-
sus controls) conducted on a TF of interest by including a few
more time points and/or samples, which will ensure that the re-
sulting gene expression data contain the prevailing regulatory
interaction profiles for associating molecular entities, and such
data can then be used to construct an ML-hGRN centered around
the TF of interest. Such a strategy will not significantly increase
experimental costs but will enable us to obtain layered hierarch-
ical networks for identifying high hierarchical regulators, middle-
level specific regulators and terminal genes as well as top-down
‘chains-of-command’ that can guide genetic engineering studies,
leading to the discovery of novel biological knowledge that can
eventually bridge genotypes and phenotypes.

Key Points

• We need to go far beyond treatment versus control ex-
periments that can only provide a large number of
DEGs. Methods and algorithms for constructing ML-
hGRNs have become available using slightly larger-scale
experiments.

• The construction of ML-hGRN can be initialized from a
TF of interest. The resulting network can not only ad-
vance our understanding of regulatory roles and func-
tions of each TF but also identify new regulators includ-
ing those that are collaborative or located at higher
hierarchic levels.

• The experimental validation of the direct target layer of
a TF using ChIP-PCR before implementing bottom-up
network construction methods will increase overall ac-
curacy of the ML-hGRN.

• Although not specifically emphasized in this review,
the construction of ML-hGRN can also start with a bot-
tom layer that contains genes from a biological process
or a pathway, leading to an ML-hGRN that governs a
biological process or pathway.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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72.Schäfer J, Strimmer K. Learning large-scale graphical
Gaussian models from genomic data. In: JF Mendes (ed).
Proceedings of “Science of Complex Networks: from Biology
to the Internet and WWW” (CNET 2004). Aveiro, PT: The
American Institute of Physics, 2005.

73.Huynh-Thu VA, Irrthum A, Wehenkel L, et al. Inferring regula-
tory networks from expression data using tree-based meth-
ods. PLoS One 2010;5(9):e12776.

Hierarchical gene regulatory network | 1031

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/3/1021/4662947 by Van Pelt and O

pie Library user on 20 N
ovem

ber 2023

http://dx.doi.org/10.1038/ng768
http://dx.doi.org/10.1093/bioinformatics/bth445

	l

